【2024.7.19】 数据治理的一些东西

定义

阿里

“数据治理”即建立在数据存储、访问、验证、保护和使用之上的一系列程序、标准、角色和指标,以期通过持续的评估、指导和监督,确保富有成效且高效的数据利用,促进跨组织协作和结构化决策,为企业创造价值。

华为

解决没有统一的数据标准,各业务系统间数据无法共享,关键核心数据无法识别以及跨系统无法拉通等。为有效管理 数据资产,实现数据价值最大化,急需建立一个完善的数据治理框架体系,为企业数字化转型打下坚实的数据基础

火山引擎

统一数据资产及标准,结合建模规范、数据质量、基线监控、SLA 治理等能力,提供全周期数据治理能力。

核心要素

  • 主体

    • 国家组织

    • 行业标准

    • 企业经营

  • 对象

    • 个人数据

    • 企业数据

    • 行业数据

  • 过程

    • 采集过程

    • 存储过程

    • 传输过程

    • 应用过程

    • 销毁备份

  • 策略

    • 数据标准

    • 数据质量

    • 数据安全

    • 数据资产

  • 价值

    • 提升质量

    • 保障风险

    • 降本增效

六大痛点

  • 组织架构不匹配,推进难度大

  • 数据孤岛严重、数据打通困难重重

  • 企业数据质量管理难,问题积压

  • 企业数据资产管理混乱,想重新梳理不知从何而起

  • 数据开放风险大,数据安全不合规

DCMM评估模型

  • 1.、数据战略

  • 2、数据治理

    • 数据治理组织

    • 数据制度建设

    • 数据治理沟通

  • 3、数据架构

  • 4、数据应用

  • 5、数据安全

  • 6、数据质量

  • 7、数据标准

  • 8、数据生命周期

数据治理标准体系

  • A基础共性

    • 业务术语

    • 参考架构

    • 通用要求

    • 测评评估

  • B数据基础设施

    • 数据库

    • 大数据平台

    • 数据资产管理

    • 数据分析挖掘

    • 数据流通

    • 数据安全

  • C数据资产管理

    • 基础数据

    • 主数据

    • 元数据

    • 数据质量

    • 数据架构

    • 数据开发

    • 数据应用

    • 数据共享

    • 数据运营

    • 数据价值评估

  • D数据流通

    • 数据开放

    • 数据交易

    • 数据跨境

  • E数据安全

    • 基础安全

    • 全生命周期安全

数据标准体系

  • 采集标准

    • 数据采集频率

    • 数据采集字段

    • 数据采集质量

  • 质量标准

    • 数据准确性

    • 数据完整性

    • 数据一致性

  • 资产标准

    • 数据分类

    • 数据归属

    • 数据维护

  • 安全标准

    • 数据访问控制

    • 数据传输加密

    • 数据备份恢

数据质量价值评估

  • 完整性

  • 唯一性

  • 有效性

  • 一致性

  • 准确性

  • 及时性

数据治理框架

  • 数据标准

    • 数据字典发布

    • 数据源认证

    • 集成标准

    • 数据标准制定

    • 关键对象识别

  • 数据架构

    • 数据分布

    • 数据资产

    • 数据模型

  • 元数据

    • 数据地图

    • 血缘关系

    • 元数据模型

    • 元数据规范

  • 主数据

    • 主数据规范

    • 主数据定义

    • 主数据识别

  • 数据质量

    • 数据质量改进

    • 数据质量度量

    • 数据质量控制

    • 数据质量标准

  • 数据安全

    • 数据销毁安全

    • 数据使用安全

    • 数据处理安全

    • 数据存储安全

    • 数据传输安全

    • 数据采集安全

现状评估

  • 01、数据架构

    • 工具:数据管理工具

    • 范围:数据模型,数据定义,数据映射规范,数据流,结构化数据应用变成接口

    • 模式:数据中台,数据前台,数据BP

  • 02、数据集成

    • 目的:

      • 1、按照所需格式,及时得提供安全、合规的数据

      • 2、将数据物理的或虚拟的合并到数据中心,进行统一的存储和管理

      • 3、支撑商务智能、数据分析、主数据管理,并致力于提高运营效率

    • 解决方案:开发数据流处理、制定数据迁移方案、制定任务方式、维护数据集成和元数据

  • 03、数据模型

    • 定义:以数据模型的精确形式,进行发现、分析、展示、和沟通数据需求,它包括数据模型管理、数据模型的命名规范、定义标准、标准域、标准缩写等

  • 04、元数据

    • 数据血缘:数据从生产、处理、流转到消亡过程中,数据之间形成的类似于人类社会血缘关系的关系(粒度:表级或字段级)

    • 内容构成

      • 1、业务元数据(业务主题、业务规则、业务分类等非技术名称和定义)

      • 2、技术元数据(字段名称、字段类型等有关的数据的技术细节的信息)

      • 3、管理元数据(数据归属、数据等级等针对数据进行管理的信息)

    • 目标

      • 1、改善数据使用者和IT专业人员之间的沟通,解决大家对于名字的一致理解

      • 2、全面记录数据背景、历史,确保大家对于名字的一致理解

      • 2、全面记录数据背景、历史,确保人们理解和使用数据内容的一致性

      • 3、了解来自组织不同部门的数据之间的相似和差异

      • 4、确保元数据的质量、一致性、及时性,以免耽误数据分析和决策

  • 05、数据质量

    • 目标

      • 1、提高组织数据价值和数据利用的机会

      • 2、降低低质量数据导致的风险和成本

      • 3、提高组织效率和生产力

    • 处理方式:数据清洗、数据增强、数据解析、数据转换

    • 评估维度

      • 1、完整性

      • 2、唯一性

      • 3、及时性

      • 4、有效性

      • 5、准确性

      • 6、一致性

  • 06、数据安全

    • 定义:确保数据隐私和机密性得到维护,数据不被破坏、数据被适当访问

    • 数据防护:识别数据安全、制定安全制度、数据防护策略、评估当前风险、实施和监控

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值