定义
阿里
“数据治理”即建立在数据存储、访问、验证、保护和使用之上的一系列程序、标准、角色和指标,以期通过持续的评估、指导和监督,确保富有成效且高效的数据利用,促进跨组织协作和结构化决策,为企业创造价值。
华为
解决没有统一的数据标准,各业务系统间数据无法共享,关键核心数据无法识别以及跨系统无法拉通等。为有效管理 数据资产,实现数据价值最大化,急需建立一个完善的数据治理框架体系,为企业数字化转型打下坚实的数据基础
火山引擎
统一数据资产及标准,结合建模规范、数据质量、基线监控、SLA 治理等能力,提供全周期数据治理能力。
核心要素
-
主体
-
国家组织
-
行业标准
-
企业经营
-
-
对象
-
个人数据
-
企业数据
-
行业数据
-
-
过程
-
采集过程
-
存储过程
-
传输过程
-
应用过程
-
销毁备份
-
-
策略
-
数据标准
-
数据质量
-
数据安全
-
数据资产
-
-
价值
-
提升质量
-
保障风险
-
降本增效
-
六大痛点
-
组织架构不匹配,推进难度大
-
数据孤岛严重、数据打通困难重重
-
企业数据质量管理难,问题积压
-
企业数据资产管理混乱,想重新梳理不知从何而起
-
数据开放风险大,数据安全不合规
DCMM评估模型
-
1.、数据战略
-
2、数据治理
-
数据治理组织
-
数据制度建设
-
数据治理沟通
-
-
3、数据架构
-
4、数据应用
-
5、数据安全
-
6、数据质量
-
7、数据标准
-
8、数据生命周期
数据治理标准体系
-
A基础共性
-
业务术语
-
参考架构
-
通用要求
-
测评评估
-
-
B数据基础设施
-
数据库
-
大数据平台
-
数据资产管理
-
数据分析挖掘
-
数据流通
-
数据安全
-
-
C数据资产管理
-
基础数据
-
主数据
-
元数据
-
数据质量
-
数据架构
-
数据开发
-
数据应用
-
数据共享
-
数据运营
-
数据价值评估
-
-
D数据流通
-
数据开放
-
数据交易
-
数据跨境
-
-
E数据安全
-
基础安全
-
全生命周期安全
-
数据标准体系
-
采集标准
-
数据采集频率
-
数据采集字段
-
数据采集质量
-
-
质量标准
-
数据准确性
-
数据完整性
-
数据一致性
-
-
资产标准
-
数据分类
-
数据归属
-
数据维护
-
-
安全标准
-
数据访问控制
-
数据传输加密
-
数据备份恢
-
数据质量价值评估
-
完整性
-
唯一性
-
有效性
-
一致性
-
准确性
-
及时性
数据治理框架
-
数据标准
-
数据字典发布
-
数据源认证
-
集成标准
-
数据标准制定
-
关键对象识别
-
-
数据架构
-
数据分布
-
数据资产
-
数据模型
-
-
元数据
-
数据地图
-
血缘关系
-
元数据模型
-
元数据规范
-
-
主数据
-
主数据规范
-
主数据定义
-
主数据识别
-
-
数据质量
-
数据质量改进
-
数据质量度量
-
数据质量控制
-
数据质量标准
-
-
数据安全
-
数据销毁安全
-
数据使用安全
-
数据处理安全
-
数据存储安全
-
数据传输安全
-
数据采集安全
-
现状评估
-
01、数据架构
-
工具:数据管理工具
-
范围:数据模型,数据定义,数据映射规范,数据流,结构化数据应用变成接口
-
模式:数据中台,数据前台,数据BP
-
-
02、数据集成
-
目的:
-
1、按照所需格式,及时得提供安全、合规的数据
-
2、将数据物理的或虚拟的合并到数据中心,进行统一的存储和管理
-
3、支撑商务智能、数据分析、主数据管理,并致力于提高运营效率
-
-
解决方案:开发数据流处理、制定数据迁移方案、制定任务方式、维护数据集成和元数据
-
-
03、数据模型
-
定义:以数据模型的精确形式,进行发现、分析、展示、和沟通数据需求,它包括数据模型管理、数据模型的命名规范、定义标准、标准域、标准缩写等
-
-
04、元数据
-
数据血缘:数据从生产、处理、流转到消亡过程中,数据之间形成的类似于人类社会血缘关系的关系(粒度:表级或字段级)
-
内容构成
-
1、业务元数据(业务主题、业务规则、业务分类等非技术名称和定义)
-
2、技术元数据(字段名称、字段类型等有关的数据的技术细节的信息)
-
3、管理元数据(数据归属、数据等级等针对数据进行管理的信息)
-
-
目标
-
1、改善数据使用者和IT专业人员之间的沟通,解决大家对于名字的一致理解
-
2、全面记录数据背景、历史,确保大家对于名字的一致理解
-
2、全面记录数据背景、历史,确保人们理解和使用数据内容的一致性
-
3、了解来自组织不同部门的数据之间的相似和差异
-
4、确保元数据的质量、一致性、及时性,以免耽误数据分析和决策
-
-
-
05、数据质量
-
目标
-
1、提高组织数据价值和数据利用的机会
-
2、降低低质量数据导致的风险和成本
-
3、提高组织效率和生产力
-
-
处理方式:数据清洗、数据增强、数据解析、数据转换
-
评估维度
-
1、完整性
-
2、唯一性
-
3、及时性
-
4、有效性
-
5、准确性
-
6、一致性
-
-
-
06、数据安全
-
定义:确保数据隐私和机密性得到维护,数据不被破坏、数据被适当访问
-
数据防护:识别数据安全、制定安全制度、数据防护策略、评估当前风险、实施和监控
-