如何在 Python 中计算 MAPE

平均绝对百分比误差(MAPE)是评估预测模型准确性的一种指标,其计算涉及实际值与预测值的差异。在Python中,可以自定义函数来计算MAPE。MAPE值越低,模型预测精度越高。然而,MAPE不适用于实际值为零或低容量数据的情况,因为它可能导致未定义或过度放大误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

平均绝对百分比误差 (MAPE) 通常用于衡量模型的预测准确性。计算如下:

MAPE = (1/n) * Σ(|实际 - 预测| / |实际|) * 100

在哪里:

Σ – 表示“总和”的符号
n – 样本量
actual – 实际数据值
prediction – 预测的数据值
MAPE 是常用的,因为它易于解释和易于解释。例如,MAPE 值为 11.5% 意味着预测值与实际值之间的平均差异为 11.5%。

MAPE 的值越低,模型预测值的能力就越好。例如,MAPE 为 5% 的模型比 MAPE 为 10% 的模型更准确。

如何在 Python 中计算 MAPE
没有内置的 Python 函数来计算 MAPE,但我们可以创建一个简单的函数来执行此操作:

import numpy as np

def mape(actual, pred)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小夕Coding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值