MAPE指标在Python中的使用注意事项

64 篇文章 ¥59.90 ¥99.00
本文介绍了在Python中使用MAPE(平均绝对百分比误差)评估预测模型时需要注意的事项,包括处理零值、无穷大值以及避免除以零错误。提供了相应代码示例以确保计算的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MAPE指标在Python中的使用注意事项

MAPE(Mean Absolute Percentage Error,平均绝对百分比误差)是一种常用的评估预测模型准确性的指标。它用于衡量预测值与实际观测值之间的差异,并以百分比的形式表示误差的大小。在Python中计算和使用MAPE指标时,有一些注意事项需要考虑。本文将介绍这些注意事项,并提供相应的源代码示例。

  1. 处理零值:MAPE指标在计算过程中需要除以实际观测值。当实际观测值为零时,除法操作将导致错误。一种常见的处理方法是将实际观测值为零的样本排除在计算之外,或者将其替换为一个非零的小值。下面是一个处理零值的示例代码:
import numpy as np

def calculate_mape(predictions, actuals):
    err
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值