背包问题学习

背包问题

1.01背包问题

01背包就是给定一个体积已知的背包,然后有一组物品,每个物品都有自己的体积以及价值,每个物品只能选取一次,求得背包中所装物品的最大价值。

求解背包问题以及相类似的DP问题,都应当先得出该题的转移方程,根据转移方程进行求解。

可以将状态分为

1.不取第i个物品,此时的状态方程为:
f i , j = f i − 1 , j f_{i,j} = f_{i-1,j} \\ fi,j=fi1,j
2.取第i个物品,此时的状态方程有些特殊,我们可以将其转化为不含第i个物品的状态方程
f i , j = m a x ( f i , j , f i − 1 , j − v [ i ] + w [ i ] ) f_{i,j} = max(f_{i,j}, f_{i-1,j-v[i]}+w[i]) fi,j=max(fi,j,fi1,jv[i]+w[i])
此时代码可以写为:

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N], f[N][N];

int main () {
    scanf("%d%d", &n, &m);
    
    for (int i = 1; i <= n; i ++) scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i ++) {
        for (int j = 1; j <= m; j ++) {
            f[i][j] = f[i-1][j];
            if (j >= v[i]) f[i][j] = max(f[i][j], f[i-1][j-v[i]]+w[i]);
        }
    }
    
    printf("%d", f[n][m]);
    return 0;
}

因为我们最终只需要得到一个结果,因此我们可以将f进行降维。

降维之后在第二层循环中因为我们在循环中有j-v[i],如果我们的j仍然从低开始往高处循环,此时会出现重复的情况,因为我们可将j从m开始循环递减,这样就避免了重复情况的出现。

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N], f[N];

int main () {
    scanf("%d%d", &n, &m);
    
    for (int i = 1; i <= n; i ++) scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i ++) {
        for (int j = m; j >= v[i]; j --) {
            //f[i][j] = f[i-1][j];
            //降维后为f[j] = f[j]可以省略
            f[j] = max(f[j], f[j-v[i]]+w[i]);
        }
    }
    
    printf("%d", f[m]);
    return 0;
}
2.完全背包问题

对于完全背包问题,即每件物品可以随意使用,同上,对于完全背包问题,其状态转移方程为:
f i , j = m a x ( f i − 1 , j , f i − 1 , j − v [ i ] + w [ i ] , f i − 1 , j − 2 v [ i ] + 2 w [ i ] , . . . . . , f i − 1 , j − k v [ i ] + k w [ i ] ) f i , j − v [ i ] = m a x ( f i − 1 , j − v [ i ] , f i − 1 , j − 2 v [ i ] + w [ i ] , . . . . . , f i − 1 , j − k v [ i ] + k w [ i ] ) ∴ f [ i , j ] = m a x ( f i − 1 , j , f i , j − v [ i ] ) f_{i,j} = max(f_{i-1,j}, f_{i-1,j-v[i]}+w[i], f_{i-1,j-2v[i]}+2w[i], .....,f_{i-1,j-kv[i]}+kw[i])\\ f_{i,j-v[i]} = max(f_{i-1,j-v[i]}, f_{i-1,j-2v[i]}+w[i],.....,f_{i-1,j-kv[i]}+kw[i])\\ \therefore f[i,j] = max(f_{i-1,j}, f_{i,j-v[i]}) fi,j=max(fi1,j,fi1,jv[i]+w[i],fi1,j2v[i]+2w[i],.....,fi1,jkv[i]+kw[i])fi,jv[i]=max(fi1,jv[i],fi1,j2v[i]+w[i],.....,fi1,jkv[i]+kw[i])f[i,j]=max(fi1,j,fi,jv[i])
因此,代码为:

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N], f[N];

int main () {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++) scanf("%d%d", &v[i], &w[i]);
    
    for (int i = 1; i <= n; i ++) {
        for (int j = v[i]; j <= m; j ++) {
            f[j] = max(f[j], f[j-v[i]] + w[i]); 
        }
    }
    
    printf("%d", f[m]);
    return 0;
}
3.多重背包问题

对于多重背包问题,即第i件物品有s个,其余条件与上述都相同,求在此情况下的背包所能装下物品的最大价值。

对于多重背包问题,与完全背包问题类似,但因为多重背包问题是有限个,完全背包问题是无限个,所以又有一些区别,因此需要重新进行分析。

可得状态转移方程:
f i , j = m a x ( f i − 1 , j , f i − 1 , j − v [ i ] + w [ i ] , f i − 1 , j − 2 v [ i ] + 2 w [ i ] , . . . . . , f i − 1 , j − k v [ i ] + k w [ i ] ) f i , j − v [ i ] = m a x ( f i − 1 , j − v [ i ] , f i − 1 , j − 2 v [ i ] + w [ i ] , . . . . . , f i − 1 , j − k v [ i ] + ( k − 1 ) w [ i ] , f i − 1 , j − ( k + 1 ) v [ i ] + ( k + 1 ) w [ i ] ) f_{i,j} = max(f_{i-1,j}, f_{i-1,j-v[i]}+w[i], f_{i-1,j-2v[i]}+2w[i], .....,f_{i-1,j-kv[i]}+kw[i])\\ f_{i,j-v[i]} = max(f_{i-1,j-v[i]}, f_{i-1,j-2v[i]}+w[i],.....,f_{i-1,j-kv[i]}+(k-1)w[i],f_{i-1,j-(k+1)v[i]}+(k+1)w[i])\\ fi,j=max(fi1,j,fi1,jv[i]+w[i],fi1,j2v[i]+2w[i],.....,fi1,jkv[i]+kw[i])fi,jv[i]=max(fi1,jv[i],fi1,j2v[i]+w[i],.....,fi1,jkv[i]+(k1)w[i],fi1,j(k+1)v[i]+(k+1)w[i])
因为下面的与完全背包问题相比多出来一项,同时最大值之间并不能直接相减,因此不能直接像完全背包问题一样。

对于多重背包问题,我们可以换一种思考方式,假设第i种物品有s个,我们就将这s个i种物品当成s种物品,将多重背包问题转化为01背包问题。

但是如果直接这样分的话,所需要花费的时间复杂度极其高,我们需要对其进行简化。

在这里我们可以使用二进制优化,能够有效降低时间复杂度。

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 25000;
int n, m;
int v[N], w[N], f[N];

int main () {
    scanf("%d%d", &n, &m);
    int cnt = 0;
    
    for (int i = 1; i <= n; i ++) {
        int a, b, s;
        scanf("%d%d%d", &a, &b, &s);
        int k = 1;
        while (k <= s) {
            cnt ++;
            v[cnt] = a * k;
            w[cnt] = b * k;
            s -= k;
            k *= 2;
        }
        
        if (s > 0) {
            cnt ++;
            v[cnt] = a * s;
            w[cnt] = b * s;
        }
    }
    
    n = cnt;
    for (int i = 1; i <= n; i ++) {
        for (int j = m; j >= v[i]; j --) f[j] = max(f[j], f[j-v[i]] + w[i]);
    }
    
    printf("%d", f[m]);
    
    return 0;
}
4.分组背包问题

对于分组背包问题有很多组,但每一组只能选一个。和上述类似,同理可得状态转移方程。
f i , j = m a x ( f i , j , f i − 1 , j − v [ i ] [ k ] + w [ i ] [ k ] ) f_{i,j}=max(f_{i,j},f_{i-1,j-v[i][k]}+w[i][k]) fi,j=max(fi,j,fi1,jv[i][k]+w[i][k])
可得代码:

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;
int n, m;
int v[N][N], w[N][N], s[N], f[N];

int main () {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++) {
        scanf("%d", &s[i]);
        for (int j = 1; j <= s[i]; j ++) {
            scanf("%d%d", &v[i][j], &w[i][j]);
        }
    }
    
    for (int i = 1; i <= n; i ++) {
        for (int j = m; j >= 0; j --) {
            for (int k = 1; k <= s[i]; k ++) {
                if (j >= v[i][k]) f[j] = max(f[j], f[j-v[i][k]] + w[i][k]);
            }
        }
    }
    printf("%d", f[m]);
    
    return 0;
}

$$

$$

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值