今天分享的是人形机器人系列深度研究报告:《人形机器人专题:人形机器人元年或将开启,AI下游硬件应用迭起》。
(报告出品方:天风证券)
报告共计:65页
技术沿革:ACT 提升模仿学习能力,ALOHA 解决成本高昂问题
机械手臂的运动控制能力,是制约人形机器人普适性和灵活性发展的关键因素。这也是Mobile ALOHA 开源项目的独特性和技术含量所在,利用直接的“模仿学习”方法,让机器人“模仿”人类,低成本地解决操作训练和灵敏度问题,以 ALOHA 硬件的形式辅助 Al 的协同训练与决策精准度。
机器人类人操作训练方法多样,模仿学习的性价比优势突出。模仿学习:即从人类提供的演示中进行模仿学习,这种“行为克隆”可以让机器人学习各种原始的技能,从简单的拾放操作,到更精细的操作等等,无需庞大数据库储备用于训练 AI 大模型,在训练成本和训练周期上具有较大优势。
ACT 方法利用强化学习助力模仿学习简单化、易操作,增强机器人多场景应用性。 Mobile ALOHA 团队先期开发的 ACT(Action Chunking with Transformers)强化协同学习与模仿学习的结合,通过训练直接映射人类动作的端到端模型,无需整体建模, 就可以训练人形机器人,使得普通人也可以在较短的时间内远程操纵 Mobile ALOHA 机器人完成未训练过的任务,并达到专家水平。
灵巧手以人手的结构和功能为模仿对象,在提升机器人柔性和易用性中发挥极为重要的 作用。灵巧手