损失函数总结

一.《 Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement
1.Exposure Control Loss:抑制过度曝光,或者曝光过弱。

 其中,M表示大小为16×16的非重叠局部区域的数量,Y是增强图像中一个局部区域的平均强度值

2. Illumination Smoothness Loss:,相邻像素间的关系,去除伪影

 

 其中,N为迭代次数,∇x和∇y分别表示水平和垂直梯度运算。

3.Color Constancy Loss:基于灰度世界假设算法,三通道均值应相似,改善图像颜色

 式中,Jp表示增强图像中p个通道的平均强度值,(p,q)表示一对通道。

4.Spatial Consistency Loss:保持空间内容一致性

其中,K为局部区域的数量,Ω(i)为以区域i为中心的四个相邻区域(从上、从下、从左、从右)。我们将Y和I分别表示为增强版本和输入图像中局部区域的平均强度值

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值