《An Imaging Information Estimation Network forUnderwater Image Color Restoration》(UICRN)

该文提出了水下图像的生成方法和UICRN网络,用于水下图像复原。UICRN包含一个密集网编码器和四个解码器,分别估计光衰减、散射和模糊参数。训练过程分为预热和逐步训练阶段。实验在多种数据集上进行,使用UIQM、PSNR和色块评价指标。该方法的优点在于对不同水体的建模能力,但需要成对的训练数据且网络复杂。
摘要由CSDN通过智能技术生成

 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 46, NO. 4, OCTOBER 2021

一.contributions

1.提出了水下图像的生成方法,生了一个包含两万对的数据集

2.水下图像复原网络(UICRN)

二.UICRN

1.模型

    I_{c}:水下图像 ,J_{c}:自然图像,三个需要估计的参数:B_{c}^{\infty },T_{c}^{D},T_{c}^{B}.

2.网络

 一个编码器,四个解码器:

encoder: dense net

decoder:密集残差块RDB,过度上采样块TUB,注意力模块AM

RDB

TUB

DecoderT_{c}^{D}:估计参数T_{c}^{D},光的衰减

DecoderT_{c}^{B}:估计参数,T_{c}^{B},散射和模糊

DecoderB_{c}^{\infty }:估计参数B_{c}^{\infty }

DecoderJ_{c}:直接输出预测的自然图像,引导三个解码器重建图像。

AM

 Bridge:TUB,DB

 3.损失函数:

MSE:

y:自然图像(地面真值),\tilde{y}:预测值

MS-SSIM :保存结构化的信息:

 整体loss fuction:

4.训练:

1.预热网络

 J_{c}:由输入的I和解码器估计的网络参数代入

 得出,损失函数只用MSE

2.

J_{c}同第一步,训练三个解码器

\tilde{J_{c}^{d}}:由decoder\tilde{J}直接预测的自然图像,只训练一个解码器

I_{R}:  由输出的\tilde{J_{c}^{d}},估计的三个参数,代入得出重建的水下图像,训练四个解码器。

三.结果与评价:

1.三种数据集测试:中国南海两种数据集,开放水下数据集

2.评价指标:UIQM,\Delta C\Delta E色块评价指标

3.优点与不足:

1)针对不同水体类型建模,提高泛化性和复原效果。

2)有监督的学习,需要成对的训练集。

3)网络复杂,参数多。

参考去雾文章《Dense Scene Information Estimation Network for Dehazing》

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值