IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 46, NO. 4, OCTOBER 2021
一.contributions
1.提出了水下图像的生成方法,生了一个包含两万对的数据集
2.水下图像复原网络(UICRN)
二.UICRN
1.模型
:水下图像 ,:自然图像,三个需要估计的参数:,,.
2.网络
一个编码器,四个解码器:
encoder: dense net
decoder:密集残差块RDB,过度上采样块TUB,注意力模块AM
RDB
TUB
Decoder:估计参数,光的衰减
Decoder:估计参数,,散射和模糊
Decoder:估计参数
Decoder:直接输出预测的自然图像,引导三个解码器重建图像。
AM
Bridge:TUB,DB
3.损失函数:
MSE:
y:自然图像(地面真值),:预测值
整体loss fuction:
4.训练:
1.预热网络
:由输入的I和解码器估计的网络参数代入
得出,损失函数只用MSE
2.
同第一步,训练三个解码器
:由decoder直接预测的自然图像,只训练一个解码器
: 由输出的,估计的三个参数,代入得出重建的水下图像,训练四个解码器。
三.结果与评价:
1.三种数据集测试:中国南海两种数据集,开放水下数据集
2.评价指标:UIQM,,色块评价指标
3.优点与不足:
1)针对不同水体类型建模,提高泛化性和复原效果。
2)有监督的学习,需要成对的训练集。
3)网络复杂,参数多。
参考去雾文章《Dense Scene Information Estimation Network for Dehazing》