机器学习练手---负荷数据预测

纸上得来终觉浅,得知此事要躬行


前言

提示:这里可以添加本文要记录的大概内容:

简单记录一下机器学习课程中的练手小项目,记录自己的技术沉淀过程。


一、数据清洗

关于机器学习,我觉得更多的时间是花在了得到一份更好的特征上面,因此在进行模型训练之前,首先要做的就是得到一些自己满意的特征。所以先看一下已给数据的分布情况来为下一步处理做准备。

查看特征与label的关联程度

Rgr = pd.read_excel('data.xlsx', sheet_name='Regression')
# 查看数据特征
features = ['feature1', 'feature2', 'feature3', 'feature4', 'feature5', 'feature6', 'feature7',
            'feature8', 'feature9', 'feature10', 'feature11', 'feature12', 'feature13', 'feature14',
            'feature15', 'feature16'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值