纸上得来终觉浅,得知此事要躬行
前言
提示:这里可以添加本文要记录的大概内容:
简单记录一下机器学习课程中的练手小项目,记录自己的技术沉淀过程。
一、数据清洗
关于机器学习,我觉得更多的时间是花在了得到一份更好的特征上面,因此在进行模型训练之前,首先要做的就是得到一些自己满意的特征。所以先看一下已给数据的分布情况来为下一步处理做准备。
查看特征与label的关联程度
Rgr = pd.read_excel('data.xlsx', sheet_name='Regression')
# 查看数据特征
features = ['feature1', 'feature2', 'feature3', 'feature4', 'feature5', 'feature6', 'feature7',
'feature8', 'feature9', 'feature10', 'feature11', 'feature12', 'feature13', 'feature14',
'feature15', 'feature16'