如何判断欧拉回路?

以下判断基于此图的基图连通。
无向图存在欧拉回路的充要条件
一个无向图存在欧拉回路,当且仅当该图所有顶点度数都为偶数,且该图是连通图。
有向图存在欧拉回路的充要条件
一个有向图存在欧拉回路,所有顶点的入度等于出度且该图是连通图。
混合图存在欧拉回路条件
要判断一个混合图G(V,E)(既有有向边又有无向边)是欧拉图,方法如下:
假设有一张图有向图G’,在不论方向的情况下它与G同构。并且G’包含了G的所有有向边。那么如果存在一个图G’使得G’存在欧拉回路,那么G就存在欧拉回路。
其思路就将混合图转换成有向图判断。实现的时候,我们使用网络流的模型。现任意构造一个G’。用Ii表示第i个点的入度,Oi表示第i个点的出度。如果存在一个点k,|Ok-Ik|mod 2=1,那么G不存在欧拉回路。接下来则对于所有Ii>Oi的点从源点连到i一条容量为(Ii-Oi)/2的边,对于所有Ii<Oi的点从i连到汇点一条容量为(Oi-Ii)/2的边。如果对于节点U和V,无向边(U,V)∈E,那么U和V之间互相建立容量为1的边。如果此网络的最大流等于∑|Ii-Oi|/2,那么就存在欧拉回路。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于一个无向图 G,存在欧拉回路的充分必要条件是 G 中每个顶点的度数均为偶数,并且 G 是连通图。因此,判断欧拉回路是否存在,可以按照以下步骤进行: 1. 统计每个顶点的度数,判断是否均为偶数。 2. 判断图是否为连通图,可以使用 DFS 或 BFS 等图遍历算法来实现。 如果以上两个条件均满足,则存在欧拉回路,输出 1,否则输出 0。 具体实现可以参考下面的 Python 代码: ```python from collections import defaultdict def dfs(G, u, visited): visited[u] = True for v in G[u]: if not visited[v]: dfs(G, v, visited) n, m = map(int, input().split()) G = defaultdict(list) degree = [0] * (n + 1) for i in range(m): u, v = map(int, input().split()) G[u].append(v) G[v].append(u) degree[u] += 1 degree[v] += 1 # 判断每个顶点的度数是否均为偶数 if any(d % 2 != 0 for d in degree[1:]): print(0) exit() # 判断是否为连通图 visited = [False] * (n + 1) dfs(G, 1, visited) if any(not visited[i] for i in range(1, n + 1)): print(0) else: print(1) ``` 其中,G 是一个 defaultdict,用于存储无向图中每个顶点的邻接表,degree 是一个列表,用于存储每个顶点的度数。在读入每条边时,更新 G 和 degree 数组。判断每个顶点的度数是否均为偶数时,使用了 any 函数,它会判断列表中是否存在任意一个元素满足给定条件。判断是否为连通图时,使用了 DFS 算法。如果有任意一个顶点未被访问到,则说明图不是连通图,输出 0。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值