关于Langchain使用Gemini的网络连接问题

问题

Langchain使用Gemini为底座时,需要设置transport='rest',表示使用HTTP
否则无法正确使用Gemini API,会一直因为网络问题阻塞。

from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.prompts import PromptTemplate
from pydantic import SecretStr

llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro",
                             google_api_key=SecretStr("你的key"),
                             transport='rest')

prompt = PromptTemplate.from_template("""
你是一个智能机器人,负责回答用户提出的问题。
问题:{question}
""")

chain = prompt | llm

r = chain.invoke(input={'question':'hi'})
print( r)

响应

content='Hi there! How can I help you today?\n' additional_kwargs={} response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'safety_ratings': []} id='run-f4dc5525-eb9e-425e-aa16-21f2915f52f5-0' usage_metadata={'input_tokens': 18, 'output_tokens': 11, 'total_tokens': 29, 'input_token_details': {'cache_read': 0}}

可以看到是正确的输出了。

当然,这一切的前提是要科学上网

内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大值法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价值,也具有很强的实际应用前景。
### LangChain Gemini代理的使用方法 LangChain提供了一种机制,使得开发人员能够利用大型语言模型(LLM)作为推理引擎来决定执行的操作及其参数。对于Gemini代理而言,这种能力被进一步扩展以适应特定的任务需求。 #### 安装依赖库 为了开始使用LangChain Gemini代理,在项目环境中安装必要的Python包是必需的第一步操作。通常情况下,这涉及到`langchain`以及其他可能的支持库。 ```bash pip install langchain ``` #### 初始化Gemini代理实例 创建并初始化一个新的Gemini代理对象涉及指定目标搜索引擎或其他服务接口。此过程允许开发者定义如何与外部资源互动的具体细节[^2]。 ```python from langchain.agents import initialize_agent, Tool from langchain.llms import OpenAI from langchain.utilities import GoogleSearchAPIWrapper # 假设已经设置好了环境变量GOOGLE_CSE_ID和GOOGLE_API_KEY search = GoogleSearchAPIWrapper() tools = [ Tool( name="Google Search", func=search.run, description="Useful for when you need to search the web." ) ] llm = OpenAI(temperature=0) gemini_agent = initialize_agent(tools, llm, agent="zero-shot-react-description", verbose=True) ``` #### 使用Gemini代理查询数据 一旦成功设置了代理实例,就可以向其发送请求来进行实际的数据检索工作。下面的例子展示了怎样询问有关技术主题的问题,并观察代理自动调用相应的搜索功能获取答案。 ```python response = gemini_agent.run("What is the latest version of Python?") print(response) ``` 上述代码片段会触发一次网络搜索活动,旨在找到关于最新版Python的相关信息。最终的结果会被打印出来供用户查看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值