1 背景
今天给大家带来经典瓶颈模型的概述。瓶颈模型是由Vickrey (1969) 首次提出,旨在解决通勤者在早高峰时段在具有交通瓶颈道路上的出发时间选择问题。
在这里不得不对维克里先生做一个简短介绍,维克里先生被称为激励经济理论的奠基者,并通过在不对称信息下对激励经济理论作出的奠基性贡献而获得了1996年的诺贝尔经济学奖。不幸的是,维克里先生在得奖三天之后,在前去开会的途中去世。
瓶颈模型假设所有通勤者具有相同的计划到达时间,提前或迟到均会造成与时间成正比的计划延误成本。通勤者根据瓶颈处的拥堵排队成本和计划延误成本之间的权衡来选择他们的出发时间以最小化旅行成本。该模型能够以简单易懂的方式对瓶颈处的排队形成和消散进行建模,从而使其成为高峰期交通拥堵动态的一个基准表示。
在过去50余年的时间里,关于瓶颈模型的研究取得了重大进展,并且得到了广泛的应用。例如,在行为分析方面:早晚高峰通勤之间的关系、异质通勤者的行为差异、通勤者对调度偏好的影响等;在需求管理方面:拥堵收费定价、可交易电子路票等,在供应管理方面:瓶颈通行能力扩张、停车容量扩张等。这些研究对于深入理解早晚高峰期通勤者出行行为的本质、缓解高峰期交通拥堵以及制定合理的交通政策起到了重要的作用。
Li et al. (2020)对涉及到瓶颈模型的研究做了一个全面而又细致的统计与分析工作。
上图显示了1969-2019年期间发表的论文按时间分布。可以发现在1969-1989的前20年间,瓶颈模型受到了较少的关注,仅发表了15篇相关论文。19。然而近十年来,瓶颈模型得到了越来越多的关注。其中,2015-2019年最近5年出现的数量最多,共有82篇,约占总数的35.3%。这种持续增长的趋势清楚地表明,瓶颈模型仍然是交通领域的一个重要和热门的研究课题,并且这种趋势预计在未来几年将持续下去。
上边的表格显示了按发表的相关论文数量排名前15位的期刊,可以看出这些期刊主要属于“交通”类和“经济学”类。Transportation Research Part B(简称TR-B,交通领域领先期刊)以75篇论文领先表1(占总发表量的32.3%),其次是Journal of Urban Economics(JUE,中国领先期刊)城市经济学领域),发表论文27篇(占11.6%)。其次 则是Transportation Science以及其他Transportation Research Part系列。显而易见的是期刊的质量都能够得到保障。
在作者方面,de Palma 以31篇论文的总发表量位居榜首。紧随其后的是Robin Lindsey和我国的黄海军教授,各有23篇论文。其中de Palma A., Lindsey R.和Arnott R.在Vickrey的基础上对瓶颈模型做了改进,并进行了大量的研究,改进后的瓶颈模型也多称为ADL模型,即以三个人的名字来进行命名。另外Small K.A.、ADL 和 Daganzo C.F.是每年平均被引次数排名前5位的作者。de Palma A. 在总引用次数上高达2185次,Small K.A.在每篇论文的平均引用次数上遥遥领先,达到每篇论文平均114次引用。
因为篇幅问题,上述只选用了一些有代表性的数据进行展示,其他数据感兴趣的朋友可以去查阅Li et al. (2020)这篇论文。
2 深入探索
近两年来,国内学者也针对瓶颈模型做了大量的研究。比如,将瓶颈模型与“MaaS”相结合,对基于奖励的交通需求管理策略进行了一系列的研究,如固定需求、弹性需求、用户异质性、非理性等方面,并前瞻性的提出了市场渗透率、预算约束、市场成本、项目效用比等约束。例如:Sun et al. (2020) 提出了在高峰时段中基于出发时间的最优奖励方案,通过奖励的手段改变通勤者的故有出发时间,从而达到削峰填谷的目的。Xiao et al. (2021)考虑了市场成本的因素,并针对奖励预算的分配进行了研究。Tian et al. (2022)考虑了用户的非理性行为,通过经济学实验的方式比较了奖励与收费之间的异同,研究发现奖励可以和收费带来同样的效果,并且发现了用户对于长短时奖励设置的偏好。Liu et al. (2022)研究发现逆强化学习模型能够复现个体的选择行为。Liu et al(2022)通过制定收费和奖励方案显著的改变了出行者的出发时间,并发现出行者在面对两种管控措施时表现出了损失规避的心理现象,所提出的模型可用于预测在修改管控措施后出行者出发时间选择的行为分布。
如果有其他关于瓶颈模型的idea或者困惑,也欢迎大家和小编进行交流。
参考文献
Li, Z.-C., Huang, H.-J. & Yang, H. (2020) Fifty years of the bottleneck model: A bibliometric review and future research directions. Transportation research part B: methodological, 139, 311-342.
Liu, Y., Li, Y., Qin, G., Tian, Y. & Sun, J. (2022) Understanding the behavioral effect of incentives on departure time choice using inverse reinforcement learning. Travel Behaviour and Society, 29, 113-124.
Sun, J., Wu, J., Xiao, F., Tian, Y. & Xu, X. (2020) Managing bottleneck congestion with incentives. Transportation research part B: methodological, 134, 143-166.
Tian, Y., Li, Y. & Sun, J. (2022) Stick or carrot for traffic demand management? Evidence from experimental economics. Transportation Research Part A: Policy and Practice, 160, 235-254.
Vickrey, W. S. (1969) Congestion theory and transport investment. The American Economic Review, 59, 251-260.
Xiao, L., Wu, J., Tian, Y., Sun, J., Lei, C. & Fang, Y. (2021) Optimizing Budget Allocation for Incentive-Based Active Travel Demand Management Solutions. Transportation Research Record, 2675, 1245-1257.