经典瓶颈模型

经典瓶颈模型

经典瓶颈模型描述了通勤者在早上通勤时的出发时间选择。每天早上, N N N​个同质通勤者从家出发,经过瓶颈容量为 s s s的高速公路上班。为了简化分析,假设所有通勤者都希望在相同的首选到达时刻 t ∗ t^* t​​​到达工作地点。假设从家到工作地点的自由流动旅行时间为零,通勤者在离开家后立即到达瓶颈并在离开瓶颈后立即到达工作地点(这种情况除非在工作地点居住哈哈)。当到达瓶颈的速度超过瓶颈的容量时,就会出现排队。那些早到或晚到的人同样会面临早到成本和迟到成本。通勤者通过权衡瓶颈排队成本和早到成本与迟到成本来选择他们的出发时间。令 C ( t ) C(t) C(t) 表示在 t t t​时刻上班族从家出发去上班的旅行成本。它由瓶颈处的排队等待成本和早到成本或迟到成本组成,则 C ( t ) C(t) C(t)可由如下表达式表述
C ( t ) = α T ( t ) + β   m a x ( 0 , t ∗ − t − T ( t ) ) + γ   m a x ( 0 , t + T ( t ) − t ∗ ) (1) C(t) = \alpha T(t) + \beta \ max(0,t^* - t - T(t)) + \gamma \ max(0,t + T(t) - t^*) \tag{1} C(t)=αT(t)+β max(0,ttT(t))+γ max(0,t+T(t)t)(1)

其中第一项表示排队等待成本,第二项表示早到成本,第三项表示迟到成本。其中, γ > α > β \gamma > \alpha > \beta γ>α>β

基本符号说明
  • α \alpha α​ 单位时间排队成本
  • β \beta β​ 单位时间早到成本
  • γ \gamma γ​ 单位时间迟到成本
  • D ( t ) D(t) D(t)​​​ t t t时刻的队列容量
  • T ( t ) T(t) T(t)​​​ t t t时刻的队列排队等待时间
  • t q t_q tq​ ​队列容量超过瓶颈容量的时间点,即排队出现的时刻
  • t q ′ t_{q'} tq排队结束的时刻

不妨令 Δ t = t ∗ − ( t + T ( t ) ) \Delta t = t^* - (t + T(t)) Δt=t(t+T(t)),则
C ( t ) = α T ( t ) + ( β Δ t   ∨ − γ Δ t ) (2) C(t) = \alpha T(t) + (\beta \Delta t \ \lor -\gamma \Delta t) \tag{2} C(t)=αT(t)+(βΔt γΔt)(2)
其中符号 ∨ \lor ​表示取大 ( a ∨ b ) = m a x ( a , b ) (a \lor b)= max(a,b) (ab)=max(a,b)​。​

t t t​​时刻的排队等待时间等于 t t t​​时刻的队列车辆数除以瓶颈容量即 T ( t ) = D ( t ) / s T(t) = D(t) / s T(t)=D(t)/s​​。 D ( t ) = t 时 刻 的 累 计 到 达 车 辆 数 − t 时 刻 的 累 计 离 开 车 辆 数 D(t)=t时刻的累计到达车辆数-t时刻的累计离开车辆数 D(t)=tt​,不妨设 t t t​时刻通勤者的出发率为 r ( t ) r(t) r(t)​,即在 t t t​时刻有 r ( t ) r(t) r(t)辆车到达瓶颈处​。​则 D ( t ) D(t) D(t)可表述为
D ( t ) = ∫ t q t r ( t ) d t − s ( t − t q ) (3) D(t) = \int_{t_q}^t r(t) dt - s( t - t_q ) \tag{3} D(t)=tqtr(t)dts(ttq)(3)
在均衡情况下,无论出发时间如何,所有通勤者都有相同的旅行成本 C ( t ) C(t) C(t)​​。这意味着 C ( t ) C(t) C(t)​是关于时间 t t t​的一个常函数,即有​

d C ( t ) d t = 0 , ∀ t ∈ ( t q , t q ′ ) (4) \frac{dC(t)}{dt}=0,\forall t \in (t_q,t_{q'}) \tag{4} dtdC(t)=0,t(tq,tq)(4)
由式(2)(3)可得
d C ( t ) d t = { α d T ( t ) d t + β d Δ t d t , ∀   t ∈ ( t q , t ~ ) α d T ( t ) d t − γ d Δ t d t , ∀   t ∈ ( t q , t ~ ) (5) \frac{dC(t)}{dt}= \begin{cases} \alpha \frac{d T(t)}{dt} + \beta \frac{d \Delta t}{dt} ,& \forall \ t \in (t_q,\tilde{t})\\ \alpha \frac{d T(t)}{dt} - \gamma \frac{d \Delta t}{dt} ,& \forall \ t \in (t_q,\tilde{t}) \tag{5} \end{cases} dtdC(t)={αdtdT(t)+βdtdΔt,αdtdT(t)γdtdΔt, t(tq,t~) t(tq,t~)(5)
式(5)中 d T ( t ) d t = r ( t ) s − 1 \frac{dT(t)}{dt}=\frac{r(t)}{s} - 1 dtdT(t)=sr(t)1 d Δ t d t = − r ( t ) s \frac{d \Delta t}{d t} = -\frac{r(t)}{s} dtdΔt=sr(t),由式(4)(5)可得 r ( t ) r(t) r(t)的解析式为
r ( t ) = { α α − β s , ∀   t ∈ ( t q , t ~ ) α α + γ s , ∀   t ∈ ( t ~ , t q ′ ) (6) r(t)= \begin{cases} \frac{\alpha}{\alpha - \beta} s, & \forall \ t \in (t_q,\tilde{t})\\ \frac{\alpha}{\alpha + \gamma} s,& \forall \ t \in (\tilde{t},t_{q'}) \tag{6} \end{cases} r(t)={αβαs,α+γαs, t(tq,t~) t(t~,tq)(6)
其中 t ~ \tilde{t} t~​​​表示通勤者从家中出发能准时到达工作地点的时间点即有 t ~ + T ( t ~ ) = t ∗ \tilde{t} + T(\tilde{t}) = t^* t~+T(t~)=t​​​​。

image-20210928111903118
图1:均衡状态下通勤者出发率

由式(3)(6)及其 T ( t ) = D ( t ) / s T(t) = D(t)/s T(t)=D(t)/s​可得
T ( t ) = { β α − β ( t − t q ) , ∀ t ∈ [ t q , t ~ ] γ α + γ ( t q ′ − t ) , ∀ t ∈ [ t ~ , t q ′ ] (7) T(t) = \begin{cases} \frac{\beta}{\alpha - \beta}(t - t_q),&\forall t \in [t_q ,\tilde{t}]\\ \frac{\gamma}{\alpha + \gamma}(t_{q'} - t),&\forall t \in [\tilde{t},t_{q'}] \tag{7} \end{cases} T(t)={αββ(ttq),α+γγ(tqt),t[tq,t~]t[t~,tq](7)
在早高峰时间段 ( t q , t q ′ ) (t_q,t_{q'}) (tq,tq)​​,瓶颈容量得到充分利用,因此 t q ′ − t q = N / s t_{q'} - t_{q} = N/s tqtq=N/s​​​​。在均衡时间点,第一个通勤者和最后一个通勤者不会面临排队的情况即 D ( t ) = 0 D(t)=0 D(t)=0​​​,因此他们的排队延误时间为零即 T ( t ) = 0 T(t)=0 T(t)=0​​​,这意味着他们的早到成本和迟到成本相等(因为他们的旅行成本相等)。
β ( t ∗ − t q ) = γ ( t q ′ − t ∗ ) (8) \beta(t^* - t_q) = \gamma (t_{q'} - t^*) \tag{8} β(ttq)=γ(tqt)(8)
t q ′ − t q = N / s t_{q'} - t_{q} = N/s tqtq=N/s t ~ + T ( t ~ ) = t ∗ \tilde{t} + T(\tilde{t}) = t^* t~+T(t~)=t解得​
t q = t ∗ − γ β + γ N s , t q ′ = t ∗ + β β + γ N s   a n d   t ~ = t ∗ − β γ α ( β + γ ) N s (9) t_q = t^* - \frac{\gamma}{\beta + \gamma} \frac{N}{s},t_{q'} = t^*+\frac{\beta}{\beta + \gamma} \frac{N}{s} \ and \ \tilde{t} = t^* - \frac{\beta \gamma}{\alpha(\beta + \gamma)}\frac{N}{s} \tag{9} tq=tβ+γγsN,tq=t+β+γβsN and t~=tα(β+γ)βγsN(9)
在这里插入图片描述

图2:均衡状态下累计出发数和累计到达数

C ( t q ) = C ( t q ′ ) C(t_q) = C(t_{q'}) C(tq)=C(tq)​解得最终均衡旅行成本为
C ˉ = β γ β + γ N s (10) \bar{C} = \frac{\beta \gamma}{\beta + \gamma}\frac{N}{s} \tag{10} Cˉ=β+γβγsN(10)

参考文献

[1]邓瑶,李志纯.基于活动的瓶颈模型和收费机制:研究进展评述[J].系统工程理论与实践,2020,40(08):2076-2089.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值