题目描述
给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。
示例 1:
输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
示例 2:
输入: numRows = 1
输出: [[1]]
提示:
1 <= numRows <= 30
思路
就是模拟,注意递推关系 a n s [ i ] [ j ] = a n s [ i − 1 ] [ j − 1 ] + a n s [ i − 1 ] [ j ] ( j ! = 0 ∣ ∣ i ) a n s [ i ] [ j ] = 1 ( j = 0 ∣ ∣ i ) \mathcal{ans[i][j]} = ans[i - 1][j - 1] +ans[i-1][j](j!=0 ||i)\\ ans[i][j]=1(j = 0 ||i) ans[i][j]=ans[i−1][j−1]+ans[i−1][j](j!=0∣∣i)ans[i][j]=1(j=0∣∣i)
其中ans[i][j]表示杨辉三角第i行第j个
代码
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> ans;
for(int i = 0; i < numRows; ++ i)
{
ans.push_back(vector<int>(i + 1));
for(int j = 0; j < i + 1; ++j)
{
if(j == 0 || j == i)
{
ans[i][j] = 1;
}
else ans[i][j] = ans[i - 1][j - 1] + ans[i - 1][j];
}
}
return ans;
}
};