Leetcode 笔记 118. 杨辉三角

本文介绍了LeetCode中的118题——杨辉三角,通过模拟实现生成指定行数的杨辉三角。文章详细阐述了杨辉三角的递推公式:ans[i][j]=ans[i−1][j−1]+ans[i−1][j](j!=0||i),以及边界条件ans[i][j]=1(j=0||i)。并提供了C++代码实现,该代码逐行生成杨辉三角,并返回结果。
摘要由CSDN通过智能技术生成

Leetcode 笔记 118. 杨辉三角

题目描述

题目连接

给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

示例 1:

输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
示例 2:

输入: numRows = 1
输出: [[1]]

提示:

1 <= numRows <= 30

思路

就是模拟,注意递推关系 a n s [ i ] [ j ] = a n s [ i − 1 ] [ j − 1 ] + a n s [ i − 1 ] [ j ] ( j ! = 0 ∣ ∣ i ) a n s [ i ] [ j ] = 1 ( j = 0 ∣ ∣ i ) \mathcal{ans[i][j]} = ans[i - 1][j - 1] +ans[i-1][j](j!=0 ||i)\\ ans[i][j]=1(j = 0 ||i) ans[i][j]=ans[i1][j1]+ans[i1][j]j!=0∣∣ians[i][j]=1(j=0∣∣i)

其中ans[i][j]表示杨辉三角第i行第j个

代码

class Solution {
public:
    vector<vector<int>> generate(int numRows) {
        vector<vector<int>> ans;

        for(int i = 0; i < numRows; ++ i)
        {
            ans.push_back(vector<int>(i + 1));
            for(int j = 0; j < i + 1; ++j)
            {
                if(j == 0 || j == i)
                {
                    ans[i][j] = 1;
                }
                else ans[i][j] = ans[i - 1][j - 1] + ans[i - 1][j];
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值