医学图像处理
文章平均质量分 92
我所努力的方向
Lyrig~
希望有一天我也能变成一个有贡献的人。
展开
-
医学图像处理 利用pytorch实现的可用于反传的Radon变换和逆变换
Computed Tomography(CT,计算机断层成像)技术作为如今医学中重要的辅助诊断手段,也是医学图像研究的重要主题。如今,随着深度学习对CT重建、CT分割的研究逐渐深入,论文开始越来越多的利用CT的每一个环节,来扩充Feature或构造损失函数。但是每到这个时候,一个问题就出现了,如果我要构造损失函数,我势必要保证这个运算中梯度不会断掉,否则起不到优化效果。原创 2024-04-03 19:33:26 · 793 阅读 · 0 评论 -
Python库使用介绍 LivermorE AI Projector for Computed Tomography LEAP
github开源代码python API文档作为一个纯计算机背景的小白,关于CT的相关工具,专业课是一点没有呀,好不容易找到一个库,网上居然一个教程都没有。所以自己写一个简易的快速上手的教程,希望能帮到同样使用这个库的人。LEAP这个库的好处在于,它利用pytorch.autograd进行实现,也就是他的输入和输出都是tensor,这实际上十分便于神经网络过程中添加一些这样的投影计算,也可以用来计算loss,真的非常棒。库的安装大家可以查看开源代码,或许过几天我会写一个安装教程也说不定。原创 2024-03-30 13:43:52 · 844 阅读 · 0 评论 -
论文学习 DOLCE:AModel-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction
论文连接代码连接需要格外注意优化去噪模型这一部分,方法太密集了,整篇论文的核心就在其中。原创 2024-03-28 15:26:14 · 785 阅读 · 2 评论 -
【论文学习】SOLVING INVERSE PROBLEMS IN MEDICAL IMAGING WITH SCORE-BASED GENERATIVE MODELS
好不容易写完了这么长的一篇,整体看来,这篇文章更像是对去噪过程的一个改进。通过在不同时间步引入对应的条件,来控制图像的生成。文章中所有的译者注中举例都按照从X光复原CT图像这个问题出发,因为导师给的任务是这个。原创 2023-11-20 21:38:30 · 407 阅读 · 0 评论 -
医学CT成像的迭代算法 SART和OS-SART算法
由测量得到的投影数据恢复到真实的CT图像,这一任务目前分为两类算法,第一种就是以反向投影FBP为主的算法,第二类则是迭代的算法(IR),本文所提到的SART和其改进版本OS-SART均为迭代算法,即需要一定的运算时间。对于算法的证明与解析本文并不涉及,只是单纯从下面这篇论文中翻译对应的部分罢了。因为发现网上对于OS-SART的解析甚少。原创 2024-02-04 22:50:35 · 2697 阅读 · 0 评论