论文学习 DOLCE:AModel-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction

论文学习 DOLCE:AModel-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction

前言

论文连接
代码连接
在这里插入图片描述

省流

目标问题: 解决有限角度CT断层扫描的重建问题

具体问题:有限角度扫描进行重建后,重建的结果会有明显的伪影。

框架名称:DOLCE

具体方法:利用扩散模型作为图像的去噪器使用,去除伪影,数据一致性更新与扩散模型采样更新同步?不是很理解最后一句话。

相关描述

逆问题

对于CT重建的逆问题,实际上可以写作一个线性问题的逆。

我们定义 x ∈ R n x\in R^n xRn为未知图像, y ∈ R m y\in R^m yRm为MRI,则线性方程可以描述为 y = A x y=Ax y=Ax

其中 A ∈ R m × n A\in R^{m\times n} ARm×n,这实际上是一个不确定问题,因此往往需要更多的假设,才能使这个方程有唯一解。

DDPM

去噪扩散模型由一个确定性的前向过程,和一个参数化训练得到的反向过程组合。

前向过程按照如下公式进行:
在这里插入图片描述
其中的 β t \beta_t βt是预先设定好的,随着 T T T的不断增大, x t x_t xt最终会成为一个各向同性的高斯噪音。

改进的反向过程

在这里插入图片描述
反向过程遵循该公式,其中 μ θ \mu_\theta μθ是参数化的神经网络预测的均值,这里需要说明的是,已经有论文证明,加上方差 σ t \sigma_t σt的预测会使结果更加准确.

因此去噪过程的公式最终为:
在这里插入图片描述

DOLCE

在这里插入图片描述
文章采用了和DDPM相似的方法,但是添加了条件 c c c,文章认为他们是第一个将条件生成用于CT重建的(这一点对此存疑)。

公式中的方差,文章采用生成的方式,即 σ t 2 : = σ θ 2 ( x t , c , t ) \sigma^2_t:=\sigma^2_\theta(x_t,c,t) σt2:=σθ2(xt,c,t)

优化去噪模型

我们发现,通过预先构造低保真的图像作为条件,能够简化训练过程。目前主流的低保真的重建方法包含FBP和RLS,这里合适的选取时机,就需要各位战友们好好摸索一番了(不是),方法的选取主要取决于期望的重建质量以及运算效率,文章认为RLS方法有更高的GPU运行效率,且重建质量更好。

去噪模型的目标函数为:
在这里插入图片描述

这里需要说明,文章中添加条件的方式为,将条件 c c c与前文RLS粗重建的图像,按照channel的维度进行合并。作为输入,进入模型。

这里还需要说明的是,在训练 σ θ 2 ( x t , c , t ) \sigma^2_\theta(x_t,c,t) σθ2(xt,c,t)时,并不采取任何更多的约束,因为好像并不会有更多的性能提升。

此外,我们还采用随机条件训练的策略,对一个扩散模型同时采用条件与无条件两种推理方式,其选择概率为 p u n c o n d = 0.2 p_{uncond}=0.2 puncond=0.2,最终noise的预测采用加权的方式:
在这里插入图片描述
其中 λ \lambda λ实际上是用于权衡两种噪音预测方式。

基于模型的迭代优化模式

迭代优化的第一步在于,利用传统inference阶段的过程,先重建一个 x ^ t − 1 \hat{x}_{t-1} x^t1,只是这里采用的是条件模型预测得到的噪音。
在这里插入图片描述
其中 z ∼ N ( 0 , I ) z \sim \mathcal{N}(0,I) zN(0,I)

之后,我们对于数据连续性的保证,采用近端优化策略:
在这里插入图片描述
其中的 γ t \gamma_t γt用于权衡用于衡量数据连续性的 ∣ ∣ A z − y ∣ ∣ 2 2 ||Az-y||_2^2 ∣∣Azy22在式中所占比例。

当然,我们的模型也可以同时采用多个 x x x并最终取平均值来代表。这种方法我们记作DOLCE-SA

实验结果

在这里插入图片描述
在这里插入图片描述

总结评价

需要格外注意 优化去噪模型 这一部分,方法太密集了,整篇论文的核心就在其中。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值