论文学习 DOLCE:AModel-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction
前言
省流
目标问题: 解决有限角度CT断层扫描的重建问题
具体问题:有限角度扫描进行重建后,重建的结果会有明显的伪影。
框架名称:DOLCE
具体方法:利用扩散模型作为图像的去噪器使用,去除伪影,数据一致性更新与扩散模型采样更新同步?不是很理解最后一句话。
相关描述
逆问题
对于CT重建的逆问题,实际上可以写作一个线性问题的逆。
我们定义 x ∈ R n x\in R^n x∈Rn为未知图像, y ∈ R m y\in R^m y∈Rm为MRI,则线性方程可以描述为 y = A x y=Ax y=Ax
其中 A ∈ R m × n A\in R^{m\times n} A∈Rm×n,这实际上是一个不确定问题,因此往往需要更多的假设,才能使这个方程有唯一解。
DDPM
去噪扩散模型由一个确定性的前向过程,和一个参数化训练得到的反向过程组合。
前向过程按照如下公式进行:
其中的
β
t
\beta_t
βt是预先设定好的,随着
T
T
T的不断增大,
x
t
x_t
xt最终会成为一个各向同性的高斯噪音。
改进的反向过程
反向过程遵循该公式,其中
μ
θ
\mu_\theta
μθ是参数化的神经网络预测的均值,这里需要说明的是,已经有论文证明,加上方差
σ
t
\sigma_t
σt的预测会使结果更加准确.
因此去噪过程的公式最终为:
DOLCE
文章采用了和DDPM相似的方法,但是添加了条件
c
c
c,文章认为他们是第一个将条件生成用于CT重建的(这一点对此存疑)。
公式中的方差,文章采用生成的方式,即 σ t 2 : = σ θ 2 ( x t , c , t ) \sigma^2_t:=\sigma^2_\theta(x_t,c,t) σt2:=σθ2(xt,c,t)
优化去噪模型
我们发现,通过预先构造低保真的图像作为条件,能够简化训练过程。目前主流的低保真的重建方法包含FBP和RLS,这里合适的选取时机,就需要各位战友们好好摸索一番了(不是),方法的选取主要取决于期望的重建质量以及运算效率,文章认为RLS方法有更高的GPU运行效率,且重建质量更好。
去噪模型的目标函数为:
这里需要说明,文章中添加条件的方式为,将条件 c c c与前文RLS粗重建的图像,按照channel的维度进行合并。作为输入,进入模型。
这里还需要说明的是,在训练 σ θ 2 ( x t , c , t ) \sigma^2_\theta(x_t,c,t) σθ2(xt,c,t)时,并不采取任何更多的约束,因为好像并不会有更多的性能提升。
此外,我们还采用随机条件训练的策略,对一个扩散模型同时采用条件与无条件两种推理方式,其选择概率为
p
u
n
c
o
n
d
=
0.2
p_{uncond}=0.2
puncond=0.2,最终noise的预测采用加权的方式:
其中
λ
\lambda
λ实际上是用于权衡两种噪音预测方式。
基于模型的迭代优化模式
迭代优化的第一步在于,利用传统inference阶段的过程,先重建一个
x
^
t
−
1
\hat{x}_{t-1}
x^t−1,只是这里采用的是条件模型预测得到的噪音。
其中
z
∼
N
(
0
,
I
)
z \sim \mathcal{N}(0,I)
z∼N(0,I)
之后,我们对于数据连续性的保证,采用近端优化策略:
其中的
γ
t
\gamma_t
γt用于权衡用于衡量数据连续性的
∣
∣
A
z
−
y
∣
∣
2
2
||Az-y||_2^2
∣∣Az−y∣∣22在式中所占比例。
当然,我们的模型也可以同时采用多个 x x x并最终取平均值来代表。这种方法我们记作DOLCE-SA
实验结果
总结评价
需要格外注意 优化去噪模型 这一部分,方法太密集了,整篇论文的核心就在其中。