风速数据被广泛用于科学、管理和政策领域,在评估可再生能源潜力、解决风灾、研究生物现象和探索气候变化等方面发挥着重要作用。但现有的风速产品存在很大的局限性:气象观测数据在空间和时间上存在不连续性,再分析产品和气候模型模拟虽然实现了数据的连续性,但大多未能重现观测到的风速趋势。此外,风速数据的高变异性及站点分布的不均匀和稀缺性,使得传统的统计插值方法,如克里金或主成分分析,在重构全球风速上表现不佳。因而,风速数据成为风速研究中“卡脖子”的难题。
在此,研究团队基于部分卷积神经网络算法(the partial convolutional neural network),融合了34个气候模式数据和气象站点观测数据HadISD(由Met Office Hadley Centre提供),重构了1973-2021年间共588个月的全球10米近地风速,空间分辨率为1.25°×2.5°(纬度×经度),该数据集包含了观测到的风速趋势信息。详细的重构过程请见参考文献中的方法部分。
该数据以nc文件储存,文件的名称为GGWS-PCNN-wind_speed-yyyymmyyyymm_vX.nc。以GGWS-PCNN-wind_speed-197301202012_v312202105p.nc为例, GGWS-PCNN为该数据集的英文简称(来自global gridded monthly wind speed dataset by the partial convolutional neural network),wind_speed表示该数据集存储了风速变量,197301202012代表该数据的覆盖时期为1973年1月到2020年12月,v312202105p表示该数据集采用了版本号为v312202105p的HadISD数据。该数据可用Matlab、ArcGIS等软件读取打开。