投资组合--蒙特卡洛模拟(Python)

该代码示例使用Python进行金融数据分析,包括加载股票历史数据、计算日回报率和波动率、执行蒙特卡洛模拟来寻找最优投资组合。通过蒙特卡洛方法生成随机权重组合,计算每个组合的夏普比率,最终确定夏普比率最高的投资组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先import需要用到的库

from numpy import *
from numpy.linalg import multi_dot
import pandas as pd
import matplotlib.pyplot as plt
from tqdm import *

加载画图的库并忽略告警

import cufflinks as cf
cf.set_config_file(
    offline = True,
    dimensions = ((800, 600)),
    theme = 'ggplot')

import plotly.express as px
px.defaults.width = 800
px.defaults.height = 600

import warnings
warnings.filterwarnings('ignore')

# 解决中文和负号问题
plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

导入外部数据(https://download.csdn.net/download/weixin_55618145/87666946

file_name = '2017_2021_daily.csv'
data 
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值