条件概率、全概率公式与贝叶斯公式





1、事件与事件运算


本文旨在回顾一下《概率论与数理统计》的知识,首先,我们来看一下其中的一些基本概念与事件的运算

基本概念如下:

  • 样本空间:一次试验所有可能的结果的集合称为样本空间,用 Ω \Omega Ω表示
  • 样本点:每一种可能的结果称为样本点,样本点也称为单例、基本事件
  • 随机事件:一个随机事件是样本空间 Ω \Omega Ω的子集,由若干个样本点构成,用大写字母 A , B , . . . A,B,... A,B,... 表示

由于我们将随机事件定义为了样本空间 Ω \Omega Ω的子集,故我们可以将集合运算(交、并、补等)移植到随机事件上。记号与集合运算保持一致

特别的,事件的并 A A A ∪ \cup B B B也可记作 A A A+ B B B,事件的交 A A A ∩ \cap B B B也可记作 A B AB AB,此时也可分别称作和事件和积事件

1)独立事件

定义:事件A与事件B互不影响(不相关),事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率,即
P ( A B ) = P ( A ) × P ( B ) P(AB)=P(A)×P(B) P(AB)=P(A)×P(B)


P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

例如,抛骰子,两次抛出的点数没有影响;再例如,从袋子中随机有放回的取出一个球(独立重复试验),第二次取出某种颜色球的概率不受第一次影响

2)互斥事件

定义:在一次试验中,事件A与事件B不能同时发生,事件A的发生与否决定了事件B的发生与否,即
P ( A B ) = 0 P(AB)=0 P(AB)=0


P ( A ∪ B ) = P ( A ) + P ( B ) P(A∪B)=P(A)+P(B) P(AB)=P(A)+P(B)

例如,抛硬币,只要正面朝上,那么一定不会反面朝上

2、条件概率与全概率公式


2.1、条件概率

定义:事件A与事件B互为相关事件,事件B在事件A发生的条件下发生的概率,即
P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

例如,从袋子中随机不放回的取出一个球,第一次取出某种颜色的球会影响第二次取出某种颜色球的概率

当事件A与事件B是独立事件时,条件概率等于事件本身的概率,即
P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

通常,我们可以通过画决策树的方式来表达条件概率

画决策树的步骤分三步:确定根节点(制定目标);确定子节点(例举目标的所有实现方案);评估(评估每种方案实现的概率)

2.2、全概率公式

根据条件概率定义我们可以得到概率乘法公式和全概率公式:

1)概率乘法公式

定义:在概率空间中,若 P ( A ) P(A) P(A)>0,则对任意事件B都有
P ( A B ) = P ( A ) P ( B ∣ A ) P(AB)=P(A)P(B|A) P(AB)=P(A)P(BA)

事件A与事件B同时发生的概率等于事件A发生的概率乘以事件A已发生的条件下事件B发生的概率;若事件A与事件B不相关,则事件A与事件B同时发生的概率等于每个事件单独发生概率的乘积

2)全概率公式

定义:在概率空间中,若一组事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An两两互斥且概率和为1,则对任意事件B都有
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B)=\sum_{i=1}^{n}P(A_i)P(B|A_i) P(B)=i=1nP(Ai)P(BAi)

推导过程如下:

Ω \Omega Ω是一个必然事件,且 Ω \Omega Ω为事件全集 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,即
Ω = A 1 + A 2 + . . . + A n \Omega=A_1+A_2+...+A_n Ω=A1+A2+...+An

因此有
P ( B ) = P ( Ω B ) = P ( Ω ∩ B ) = P ( A 1 B ) + P ( A 2 B ) + . . . + P ( A n B ) = P ( A 1 ) P ( B ∣ A 1 ) + . . . + P ( A n ) P ( B ∣ A n ) \begin{aligned} P(B)&=P(\Omega B) \\ &=P(\Omega \cap B) \\ &=P(A_1B)+P(A_2B)+...+P(A_nB) \\ &=P(A_1)P(B|A_1)+...+P(A_n)P(B|A_n) \end{aligned} P(B)=P(ΩB)=P(ΩB)=P(A1B)+P(A2B)+...+P(AnB)=P(A1)P(BA1)+...+P(An)P(BAn)

3、贝叶斯公式


一般的,设可能导致事件B发生的原因为 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,则在 P ( A i ) P(A_i) P(Ai) P ( B ∣ A i ) P(B|A_i) P(BAi)已知时可以通过全概率公式计算事件B发生的概率

但是,在很多情况下,我们需要根据事件B发生这一结果反推其各个原因事件的发生概率:
P ( A k ∣ B ) = P ( A k B ) P ( B ) = P ( A k ) P ( B ∣ A k ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(A_k|B)=\frac{P(A_kB)}{P(B)}=\frac{P(A_k)P(B|A_k)}{\sum_{i=1}^{n}P(A_i)P(B|A_i)} P(AkB)=P(B)P(AkB)=i=1nP(Ai)P(BAi)P(Ak)P(BAk)

上式为贝叶斯(Bayes)公式。其中, P ( A 1 ) , P ( A 2 ) , . . . , P ( A n ) P(A_1),P(A_2),...,P(A_n) P(A1),P(A2),...,P(An)称为先验概率(经验),是试验前已知的; P ( A k ∣ B ) P(A_k|B) P(AkB)称为后验概率(试验),后验概率是对先验概率的更新和修正。通过不断迭代,从而达到最优,由此得到的决策叫做贝叶斯决策

贝叶斯公式将条件概率 P ( A ∣ B ) P(A|B) P(AB) P ( B ∣ A ) P(B|A) P(BA)紧密联系起来,其最根本的数学基础就是
P ( A B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) P(AB)=P(A)P(B|A)=P(B)P(A|B) P(AB)=P(A)P(BA)=P(B)P(AB)

其本质内涵在于,全概率公式由因得果,贝叶斯公式则由果推因。贝叶斯公式在结果事件B已经发生的情况下,推断结果事件B是由于原因事件 A i A_i Ai造成的概率大小


  • 13
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值