扭转
1.扭转的概念
外力作用特点
杆件两端各受到一对大小相等、转向相反且作用面垂直于杆的轴线的外力偶作用
变形特点
1.杆件的任意两横截面都发生绕轴线的相对转动;
2.杆表面上的纵向线变成螺旋线
2.外力偶矩的计算、扭矩和扭矩图
外力偶矩的计算
通常外力偶矩不是直接给出的,而是通过轴所传递功率和转速 n n n计算得到的。 M e = 9549 P n M_{e}=9549\frac{P}{n} Me=9549nP
M e − M_{e}- Me−作用在轴上的力偶矩(N·m)
n − n- n−轴的转速(r/min)
P − P- P−轴传递的功率(kW)
扭矩
扭矩符号的规定,按右手螺旋法则确定扭矩的适量方向,大拇指与截面的外法线方向一致者为正,反之为负。
扭矩大小可利用截面法来确定。
扭矩图
用平行于杆轴线的坐标 x x x表示横截面的位置;用垂直于杆轴线的坐标 T T T表示横截面上的扭矩,正的扭矩画在 x x x轴上方,负的扭矩画在 x x x轴下方。
3.纯剪切
薄壁筒扭转时的切应力
薄壁筒扭转时,用相邻的两个横截面和相邻的两个纵截面,从薄壁圆筒中截出一个单元体。横截面上的切应力,均匀分布,与半径垂直,指向与扭矩的转向一致。$$\tau=\frac{M_{e}}{2\pi r^2\delta}
$$薄壁圆筒横截面上应力的分布规律分析:
(1)横截面上无正应力;
(2)只有与圆轴相切的切应力,且沿圆筒周向均匀分布;
(3)对于薄壁圆筒,可认为切应力沿壁厚也均匀分布。
切应力互等定理
在单元体相互垂直的两个平面上,切应力必然是成对存在,且数值相等,两者都垂直与两个平面的交线,方向则共同指向(或背离)这一交线,且与截面上是否存在正应力无关。
4.切应变、剪切胡克定律
纯剪切单元体的相对两侧面将发生微小的相对转动,使原来互相垂直的两个棱边的夹角改变了一个微量 γ \gamma γ,这正是切应变 γ = r φ l \gamma=\frac{r\varphi}{l} γ=lrφ
φ \varphi φ为圆筒两端横截面的相对扭转角, l l l为圆筒长度。
当切应力不超过材料的剪切比例极限时,切应变 γ \gamma γ与切应力 τ \tau τ成正比,这就是剪切胡可定律,可写成 τ = G γ \tau=G\gamma τ=Gγ
式中 G G G为比例常数,称为材料的切变模量。
弹性模量 E E E,泊松比 μ \mu μ和切变模量 G G G。对各向同性材料,可证明三个弹性常数之间存在下列关系 G = E 2 ( 1 + μ ) G=\frac{E}{2(1+\mu)} G=2(1+μ)E
5.剪切应变能
单位体积内的剪切应变能(称为应变能密度) v ε = d V ε d V = ∫ 0 γ 1 τ d γ v_{\varepsilon}=\frac{dV_{\varepsilon}}{dV}=\int_{0}^{\gamma_{1}}\tau d\gamma vε=dVdVε=∫0γ1τdγ由剪切胡可定律 τ = G γ \tau=G\gamma τ=Gγ上式可写成 v ε = 1 2 τ γ = τ 2 2 G v_{\varepsilon}=\frac{1}{2}\tau\gamma=\frac{\tau^{2}}{2G} vε=21τγ=2Gτ2
6.圆轴扭住时的应力
现在讨论横截面为圆形的直杆受扭时的应力,要综合研究变形几何、物理和静力三方面的关系
变形几何关系
圆周扭转的平面假设:等直圆轴扭转变形前原为平面的横截面,变形后仍保持为平面,形状和大小不变,半径仍保持为直线;且相邻两横截面间的距离不变。
圆轴扭转时的变形几何关系 γ ρ = ρ d φ d x \gamma_{\rho}=\rho\frac{d\varphi}{dx} γρ=ρdxdφ
物理关系
τ ρ = G γ ρ = G ρ d φ d x \tau_{\rho}=G\gamma_{\rho}=G\rho\frac{d\varphi}{dx} τρ=Gγρ</