基于机器学习深度学习:支持向量机,神经网络、朴素贝叶斯,逻辑回归的酒店评论数据文本情感分析 附代码

该博客通过酒店评论数据集,对比了支持向量机、神经网络、朴素贝叶斯和逻辑回归在情感分析中的性能。文章详细介绍了数据来源、文本预处理、情感词典构建以及模型评估。实验结果显示,尽管基于情感词典的方法简单,但机器学习方法(尤其是贝叶斯分类器)的准确率更高。
摘要由CSDN通过智能技术生成

本文采用酒店评论数据集进行情感分析,通过机器学习和基于情感词典两种方法进行分析比较。其中,机器学习方法采用了多种算法,有支持向量机、神经网络、朴素贝叶斯以及逻辑回归四种,并比较各分类器的准确率,得到准确率最高的模型。

流程图如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机毕设论文

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值