朴素贝叶斯是一种基于贝叶斯定理的分类器,它是朴素概率理论的一种实现。朴素贝叶斯分类器的核心思想是通过建立先验概率与后验概率之间的关系来进行分类,具体来说,就是先假设一个类别的概率已知,然后通过计算证据与该类别之间的关系,来确定每个证据属于该类别的后验概率,最终根据后验概率来确定每个证据的分类。
朴素贝叶斯分类器具有以下优点:
- 简单易懂:朴素贝叶斯分类器的概念清晰,易于理解和实现,因此在教育、科研等领域得到了广泛应用。
- 易于训练:朴素贝叶斯分类器的参数只需要先验概率和特征权重,因此易于训练和调整,从而可以在大规模数据集上进行训练和测试。
- 多类别分类:朴素贝叶斯分类器可以用于多类别分类,只需要调整每个类别的先验概率即可。
import numpy as np
from sklearn.naive_bayes import GaussianNB
# 构造数据
X = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0], [1, 1, 1]])#四组数据,三个特征
y = np.array([0, 1, 0, 1])
# 初始化 GaussianNB 模型
gnb = GaussianNB()
# 训练模型
gnb.fit(X, y)
# 预测新数据
new_data = np.array([[0, 0, 0], [0, 1, 1]])
print(gnb.predict(new_data))