朴素贝叶斯代码示例

朴素贝叶斯是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立。文章介绍了其工作原理,包括先验和后验概率的计算,并展示了使用Python的sklearn库实现GaussianNB模型进行训练和预测的过程。
摘要由CSDN通过智能技术生成

朴素贝叶斯是一种基于贝叶斯定理的分类器,它是朴素概率理论的一种实现。朴素贝叶斯分类器的核心思想是通过建立先验概率与后验概率之间的关系来进行分类,具体来说,就是先假设一个类别的概率已知,然后通过计算证据与该类别之间的关系,来确定每个证据属于该类别的后验概率,最终根据后验概率来确定每个证据的分类。

朴素贝叶斯分类器具有以下优点:

  1. 简单易懂:朴素贝叶斯分类器的概念清晰,易于理解和实现,因此在教育、科研等领域得到了广泛应用。
  2. 易于训练:朴素贝叶斯分类器的参数只需要先验概率和特征权重,因此易于训练和调整,从而可以在大规模数据集上进行训练和测试。
  3. 多类别分类:朴素贝叶斯分类器可以用于多类别分类,只需要调整每个类别的先验概率即可。
import numpy as np
from sklearn.naive_bayes import GaussianNB

# 构造数据
X = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0], [1, 1, 1]])#四组数据,三个特征
y = np.array([0, 1, 0, 1])

# 初始化 GaussianNB 模型
gnb = GaussianNB()

# 训练模型
gnb.fit(X, y)

# 预测新数据
new_data = np.array([[0, 0, 0], [0, 1, 1]])
print(gnb.predict(new_data))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值