先上题目:杭电oj2544最短路径
典型的最短路径题目,有经典的二种算法
迪杰斯特拉算法和弗洛伊德算法,二种算法各有好坏
先上理解:
迪杰斯特拉算法原理:
从起点开始,遍历起点到与其连通的点的最短路径的点,然后解锁该点,将这二点的路径放进距离数组中,将起点标记为已遍历,以后都不会在计算,遍历该点与其连通的点的最短路径的点,一直这样循环操作,直到遍历到终点时退出,此时距离数组中终点数的代表值就是起点到终点的距离。
该算法只能用于带正权的连通图中,有负权就没用了。
利用的就是广搜加贪心的思想。
个人理解,大家结合代码看一下叭
/*迪杰斯特拉算法,适用于正权连通图*/
/*迪杰斯特拉算法:
解决问题:求起点到终点的最短路径,
适用范围:不带环的正权连通图,
算法原理:从起点开始找其相连的点的最短路径,找到这点就将其标记,并算入最短路径中
在通过该点找与其相邻的点中的最短路径,直到找到终点退出循环。*/
#include<stdio.h>
#include<algorithm>
using namespace std;
int n,m;
int Map[105][105]; //邻接矩阵图
int flag[105]; //标记数组
int dis[105]; //各点的距离
int INF = 0x7fffffff; //无穷大
void Fun()
{
dis[1] = 0; //关键一步,不然接下来的判断全有问题
int i,j,pos,t;
for(i = 1;i <= n;i++) /*实现方式,通过起点寻找其与之相邻权值最小的点,找到该点后起点标记不在查找,
在通过该点找下一个相连的点的权值最小的点,中间累计将权值加起来,最后当找的点为终点时,寻找结束
输出答案*/
{
t = INF;
for(j = 1;j <= n;j++) /*该步骤是找前面的点到后面是权值最小的那个点,该点是由下面那个判断找到的,而一开始的条件是初始化时给的
即起点到起点的距离为0*/
{
if(flag[j] == 0)
{
if(dis[j] < t)
{
t = dis[j];
pos = j;
}
}
}
flag[pos] = 1;
if(pos == n)break; //到终点了最短路径已经找到,退出函数,或者没有起点到终点是路
for(j = 1;j <= n; j++)
{
if(flag[j] == 0) //寻找当前点到相邻点权值最小的点,并将其路径累加
{
if(Map[pos][j] !=INF && dis[pos]+Map[pos][j] < dis[j] )
dis[j] = dis[pos]+Map[pos][j];
}
}
}
}
int main()
{
int x,y,v,i,j;
while(scanf("%d %d",&n,&m)&&(n||m))
{
for(i=1;i<=n;i++)
{
flag[i] = 0; //初始化各点统统标记为未探索
dis[i] = INF; //初始化各点的距离统统为无穷大
for(j=1;j<=n;j++)
Map[i][j] = INF; //矩阵图也标记为无穷大
}
for(i = 1;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&v); //输入对应关系到矩阵图中
if(x != y &&Map[x][y] > v)
Map[x][y] = Map[y][x] =v;
}
Fun();
printf("%d\n",dis[n]);
}
return 0;
}
*/
接下来就是弗洛伊德算法啦,比较其迪杰斯特拉算法简单易懂而且代码简单,可以用于带负权的连通图中,而且可以计算任意二点间的距离,唯一的缺点可能就是时间复杂度太高了,有0(n^3)额。
弗洛伊德算法:
实现原理,初始化各点间的距离为INF,然后通过题目给定条件赋予各点之间的权值,初始化自己到自己的距离为0。
然后接下来的操作直接看老师的讲解叭(主要是我还不太会*^*):弗洛伊德算法
/*弗洛伊德算法可以求出任意二点间的最短路径,而且代码简单易懂,
缺点就是时间复杂度为n^3,太大了,实测比迪杰斯特拉算法慢4倍*/
#include<iostream>
using namespace std;
#define INF 1000005
int a[1005][1005];
int main()
{
int n,m;
int b,c,d;
int t;
while(cin>>n>>m&&(m||n))
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
a[i][j]=INF;
}
}
for(int i=1;i<=m;i++)
{
cin>>b>>c>>d;
a[b][c] = a[c][b] = d;
}
for(int i=1; i<=n; i++)
a[i][i]=0; //自己到自己的距离为0
for(int k = 1; k <= n; k++) //将每个点依次加入,看加入该点后以下二点的距离会不会改变
for(int i = 1; i <= n; i++) //计算任意二点间的距离
for(int j = 1; j <= n; j++)
if(a[i][j] > a[i][k]+a[k][j])
a[i][j] = a[i][k]+a[k][j];
cout<<a[1][n]<<endl; //最后可求出任意二点间的距离
}
}