电势、电位、电压、负电压的理解

目录

一、电势

二、电位

三、电压

四、负电压

 五、练习

六、参考博客和视频


一、电势

电势 == 电位,电路中的电势与静电学的电势在概念的描述上有差异

二、电位

在电位中选定一个参考点,则该点的电位为0,其余点对该参考点的电压值就是该点的电位值,我们一般用符号Vx表示。如图1所示,Va就表示a点的电位。

图1 电位描述

三、电压

电压就是两点之间的电位差,用Uxx表示。图中电阻的电压可用Uab表示,Uab=Va-Vb。Va>Vb则Uab>0,因此图中的Uab为正值,若Va<Vb,则Uab为负值。

 图2 电压描述

四、负电压

对于负电压的理解,我们可以先用我们在生活中常常比较的身高来理解。

假定图中小人叫小明,小明身高1.8m,当他站在地面之上时,我们说他的头高1.8m,当他站在地面之下时,我们说他的脚高-1.8m,但我们要注意到他的身高是没有变化的,还是1.8m。

 图3 身高形象表示图

 负电压的形成往往也是如此。

如图4所示,电池电压为5V,通常我们说正极为+5V的情况,是我们默认把负极接地。

 图4 电压形成

如图5所示,电池电压为5V,若我们把正极接地,则负极输出-5V。因为参照点改变电池电压不变(电压不变的概念同身高),此时正极的电位为0,因此只有负极输出-5V,才能够满足电池电压不变的条件。

 图5 负电压形成

 五、练习

 问:试算U1和U2的电压,以及点a、b、c的电位

 图6 分析题1

 图7 分析题2

六、参考博客和视频

电压,电位与电势之间的区别与联系

负电压?这是个什么东东?

<think>嗯,用户想了解熵权TOPSIS法的实现代码和计算方法,我需要先整理相关知识。首先,熵权法用于确定权重,TOPSIS则是进行综合评价。结合两者的步骤应该是先标准化数据,计算熵权,再用TOPSIS评估。 根据引用[1],熵权TOPSIS结合了熵值法确定权重和TOPSIS的评价步骤。需要确保数据标准化处理正确,可能使用极差标准化。然后计算信息熵,得到各指标的权重。之后,构建加权矩阵,计算正负理想解,最后是接近度。 用户可能需要Python或Matlab的代码示例。引用[1]提到Matlab实现,而引用[3]有Python相关内容。考虑到用户可能更常用Python,选择Python示例更合适。但需要确认代码的正确性,比如标准化方法是否正确,是否有处理负向指标的情况。 另外,用户可能对数据处理步骤不太清楚,比如归一化和指标方向调整。要解释正向化处理,比如将成本型指标转化为效益型。代码中需要包含这些步骤,或者提醒用户注意数据预处理。 熵权法的计算步骤包括标准化、计算比重、信息熵、差异系数和权重。TOPSIS部分则是加权标准化矩阵、理想解、距离计算和接近度。要确保每一步的公式正确,比如信息熵的计算需要避免取0的情况,通常会加一个极小值。 用户的问题可能还包括如何处理不同量纲的指标,所以数据标准化是关键。引用[2]提到TOPSIS对数据分布要求低,但需要处理指标方向。在代码中,可能需要区分正向和负向指标,并进行相应处理。 可能的问题点:熵权法是否适用于所有类型的数据?需要说明其适用性,比如在数据不确定性大时更客观。同时,TOPSIS不考虑权重的缺点被熵权法弥补,如引用[3]所述,所以两者的结合是合理的。 最后,代码示例要清晰,步骤注释详细,确保用户能逐步实现。可能还需要提醒常见错误,比如数据中含有负数或零,如何处理这些情况,比如在计算信息熵时加上一个很小的正数避免log(0)的错误。</think>### 熵权TOPSIS法实现详解 #### 一、方法原理 1. **熵权法**:通过信息熵计算指标权重,消除主观因素影响。信息熵越小,指标变异程度越大,权重越高[^1]。 2. **TOPSIS法**:计算各方案与正/负理想解的相对接近度进行排序。正理想解为各指标最优值集合,负理想解为各指标最劣值集合[^2]。 #### 二、实现步骤 1. **数据标准化** $$ x_{ij}' = \frac{x_{ij} - \min x_j}{\max x_j - \min x_j} \quad (\text{正向指标}) $$ $$ x_{ij}' = \frac{\max x_j - x_{ij}}{\max x_j - \min x_j} \quad (\text{负向指标}) $$ 2. **计算熵权** $$ p_{ij} = \frac{x_{ij}}{\sum_{i=1}^n x_{ij}} \quad (\text{数据比重}) $$ $$ e_j = -\frac{1}{\ln n} \sum_{i=1}^n p_{ij} \ln p_{ij} \quad (\text{信息熵}) $$ $$ w_j = \frac{1 - e_j}{\sum_{k=1}^m (1 - e_k)} \quad (\text{权重}) $$ 3. **TOPSIS计算** $$ V = X \times W \quad (\text{加权标准化矩阵}) $$ $$ D_i^+ = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^+)^2} \quad (\text{正理想解距离}) $$ $$ D_i^- = \sqrt{\sum_{j=1}^m (v_{ij} - v_j^-)^2} \quad (\text{负理想解距离}) $$ $$ C_i = \frac{D_i^-}{D_i^+ + D_i^-} \quad (\text{相对接近度}) $$ #### 三、Python代码示例 ```python import numpy as np import pandas as pd def entropy_weight_topsis(data, positive_cols): # 数据标准化 data_norm = data.copy() for col in data.columns: if col in positive_cols: data_norm[col] = (data[col] - data[col].min()) / (data[col].max() - data[col].min()) else: data_norm[col] = (data[col].max() - data[col]) / (data[col].max() - data[col].min()) # 计算熵权 p = data_norm / data_norm.sum(axis=0) e = (-1 / np.log(len(data))) * (p * np.log(p)).sum(axis=0) weights = (1 - e) / (1 - e).sum() # 加权标准化 weighted_matrix = data_norm * weights # 确定理想解 positive_ideal = weighted_matrix.max(axis=0) negative_ideal = weighted_matrix.min(axis=0) # 计算距离 d_plus = np.sqrt(((weighted_matrix - positive_ideal)**2).sum(axis=1)) d_minus = np.sqrt(((weighted_matrix - negative_ideal)**2).sum(axis=1)) # 计算接近度 closeness = d_minus / (d_plus + d_minus) return closeness.sort_values(ascending=False) # 示例数据 data = pd.DataFrame({ '销售额': [500, 800, 600], '成本': [200, 150, 180], '满意度': [0.8, 0.9, 0.7] }) result = entropy_weight_topsis(data, positive_cols=['销售额','满意度']) print("方案排序结果:\n", result) ``` #### 四、数据处理要点 1. **指标方向统一**:需明确区分正向指标(越大越好)和负向指标(越小越好) 2. **数据归一化**:消除量纲差异,建议采用极差标准化 3. **零值处理**:计算信息熵时需避免p=0,可添加极小值ε=1e-6 #### 五、常见应用场景 1. 供应商选择 2. 投资项目评估 3. 城市发展水平评价 4. 医疗质量评估
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值