Douglas–Peucker algorithm道格拉斯扑克算法\曲线弯曲度的计算

  基于给定的阈值(角度、距离)对折线进行压缩(平滑)。

  使用VS2019,C#,建立窗体应用程序,PictureBox用于线段的自定义生成。

0.准备工作:

button1:用于画线

button2:用于基于距离的压缩

button3:用于基于角度的压缩

(button4:清空画板)

picturebox:画线并存储

numericUpDown1:设置角度阈值(默认为90)

numericUpDown2:设置距离阈值(默认为100)

count:用于计算压缩的点数

代码准备:

List<Point> linePoints = null;      linePoints用于存储折断的信息

bool isOpenLine = false;      isOpenLine用于判断是否开始画线

设置两个点:开始点,追踪点(Point)

注意:双击停止画线,同时要将linePoints的最后一个点移除。

一、思路

  对于压缩,计算各个线段的角度/长度,如果在阈值要求范围内,计算下一个;在阈值范围之外则去除该线段。

  对于弯曲度的计算,专指分布走向沿Y轴方向的线段。取线段上各个点的Y值取平均,X取最大和最小值,以这条直线作为衡量折线弯曲度的标准。

  采用面向对象的思想,将计算的方法封装成函数,下面将介绍所写的函数。

二、基于距离压缩

        public void CondenseCal(List<Point> p)
        {
            Graphics g = pictureBox1.CreateGraphics();
            Pen pen = new Pen(System.Drawing.Color.Red);
            double disfree = Convert.ToDouble(numericUpDown2.Text);

            for (int i = 0; i < p.Count; i++)
            {
                if (i + 1 < p.Count)
                {
                    double dis = DisTwoPoint(p[i], p[i + 1]);
                    if (dis < disfree)
                    {
                        p.RemoveAt(i + 1);
                        count--;
                    }
                }
            }
            for (int j = 0; j < p.Count; j++)
            {
                if (j + 1 < p.Count)
                {
                    g.DrawLine(pen, p[j], p[j + 1]);
                }
            }
            g.DrawLine(pen, p[p.Count - 1], p[p.Count - 2]);
        }

三、基于角度压缩

计算思路与距离压缩相同,但注意角度的计算需要*180/Mat.PI

   (Math.Atan2((p[i + 1].Y - p[i].Y), (p[i + 1].X - p[i].X))) * 180 / Math.PI

四、曲线弯曲度的计算

            double minx = 99999;
            double maxx = 0;
            double ymean = 0;
            double sumy = 0;
            for (int i = 0; i < linePoints.Count; i++)
            {
                if (linePoints[i].X < minx)
                {
                    minx = linePoints[i].X;
                }
                if (linePoints[i].X > maxx)
                {
                    maxx = linePoints[i].X;
                }
                sumy += linePoints[i].Y;
            }
            ymean = sumy / linePoints.Count;
            Pen p = new Pen(System.Drawing.Color.BlueViolet, 4);
            g.DrawLine(p, (float)minx, (float)ymean, (float)maxx, (float)ymean);

五、结果

原创作品,禁止抄袭

需要完整代码,欢迎留言

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Douglas-Peucker算法是一种用于曲线抽稀的算法,其难点主要涉及以下几个方面: 1. 抽稀误差的选择:Douglas-Peucker算法通过计算每个点到折线的垂直距离来确定是否保留该点。这个过程中需要选择合适的抽稀误差阈值,即判断点是否保留的阈值。选择过小的阈值会导致折线过于密集,保留过多的点;而选择过大的阈值会导致折线过于稀疏,可能会丢失重要的细节。 2. 折线拟合的准确性:Douglas-Peucker算法通过不断递归地进行抽稀操作,直到满足抽稀误差阈值。在每次递归中,需要拟合一条直线来代表原始曲线上的点。这个过程中,选择合适的直线拟合方法和准确的拟合结果是一个难点。 3. 算法复杂和效率:Douglas-Peucker算法在每次递归中需要计算每个点到折线的垂直距离,这个计算量与点的数量成正比。当处理大规模数据时,算法的复杂和效率成为一个挑战,需要考虑如何优化算法以提高处理速。 4. 曲线的形状和特征:Douglas-Peucker算法对于不同形状和特征的曲线可能表现出不同的效果。例如,对于弯曲曲线或存在局部细节的曲线算法可能会有一定的局限性,需要考虑如何调整参数或采用其他方法来处理这些情况。 综上所述,Douglas-Peucker算法曲线抽稀中存在一些难点,需要仔细选择抽稀误差、拟合准确性、算法效率以及适应不同曲线特征等方面的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值