使用VS C#实现距离的计算(点点、点线、点面、线面、线线、面面)

    距离的量算在是进行空间分析等的基础,下面将为大家介绍几种距离的计算方法以及如何使用C#语言进行实现。本文使用VS2019,创建C#窗体应用程序,通过使用PitcureBox控件与用户进行交互来实现多种距离的量算。

准备:

1、建立窗体应用程序。

2、设置画点线面的“开关”,(bool变量,当点击按钮时,false变为true)。

3、添加画板(PictureBox)。

4、创建画图工具(Pen、Brush)。

5、为画板添加绘图事件(MouseDown、DoubleClick等)。

     注意:线线距离以及面面距离计算时,需要设置不同的容器对所画的点进行存储,特别是画面时,注意区分前后的多边形。

一、点点距离

    点与点之间的距离衡量,在这里总结了欧氏距离、绝对值距离(曼哈顿距离)、切氏距离、明氏距离、马氏距离、切比雪夫距离六种距离的计算方法。

(1)欧氏距离(Euclidean

    欧氏距离是最常见的两点之间或者多点之间的距离的表示方法,在中学涉及的数学问题大都是通过欧氏距离来实现和表达的。欧氏距离的计算最简单、直观,也是距离计算中最容易理解的一种方式。

    在此我们实现的是两点之间的欧氏距离的计算,代码如下:

​
        //欧氏距离
        public double Euclidean(double dx1, double dy1, double dx2, double dy2)
        {
            double dx = Math.Pow(dx1 - dx2, 2);
            double dy = Math.Pow(dy1 - dy2, 2);
            double Euclideanres = Math.Pow(dx + dy, 0.5);
            return Euclideanres;
        }

​

(2)绝对值距离(街坊距离、Manhattan距离

    绝对值距离表达的是点集中点的xy值之差的绝对值之和,绝对值距离的计算公式为:

    曼哈顿距离在2维平面是两点在纵轴上的距离加上在横轴上的距离,即

    对于一个具有正南正北、正东正西方向规则布局的街道,从一点到达另一点的距离正是在南北方向上旅行的距离加上在东西方向上旅行的距离。曼哈顿距离不是距离不变量,当坐标轴变动时,点间的距离就会不同。

    在此我们实现的是多点之间的绝对值距离的计算,代码如下:

                    double sum = 0;
                    for (int i = 0; i < pointCount; i++)
                    {
                        //取绝对值
                        sum = System.Math.Abs(Convert.ToDouble(Points[i].X) - Convert.ToDouble(Points[i].Y));
                        sum += sum;
                    }

(3)切氏距离(Chebyshev

    切氏距离计算的是点集中所有点的X坐标与Y坐标之差的绝对值的最大值,切氏距离的计算公式:

部分代码如下: 

    for (int i = 0; i < pointCount; i++)
    {
        //取绝对值
        max = System.Math.Abs(Convert.ToDouble(px[i]) - Convert.ToDouble(py[i]));
        for (int j = 0; j < pointCount; j++)
        {
            res = System.Math.Abs(Convert.ToDouble(Points[j].X) - Convert.ToDouble(Points[j].Y));
            if (res > max)
            {
                max = res;
            }
        }
    }
    label4.Text = "切氏距离为" + max;

(4)明氏距离

    明氏距离可以理解为绝对值距离的一般规律,绝对值距离是特殊的明氏距离。明氏距离有一个量纲m。当m=1时,明氏距离与绝对值距离的计算结果相同。

    明氏距离的计算公式:

部分代码如下:  

                    double m = Convert.ToDouble(textBox2.Text);

                    double sum = 0;
                    for (int i = 0; i < pointCount; i++)
                    {
                        //取绝对值
                        sum = System.Math.Abs(Convert.ToDouble(Points[i].X) - Convert.ToDouble(Points[i].Y));
                        //取幂
                        sum = System.Math.Pow(sum, m);
                        sum += sum;
                    }
                    double Min = System.Math.Pow(sum, 1 / m);
                    label4.Text = "明氏距离距离为" + Min;

(5)马氏距离(Minkowski

    马氏距离的计算涉及协方差矩阵的计算,在马氏距离的计算中如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧式距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。

    马氏距离的计算公式:

    此处用Python实现的示例:

# 马氏距离
from scipy.spatial import distance
import numpy as np
from numpy.linalg import inv
SIGMA = np.array([[2,1],[1,2]])

q=[0,0]
x_1=[-3.5,-4]
x_2=[2.75,-1.5]

d_1=distance.mahalanobis(q,x_1,inv(SIGMA))
d_2=distance.mahalanobis(q,x_2,inv(SIGMA))
print(d_1)
print(d_2)

二、点线距离

    点线距离的计算需要利用向量夹角来判断,判断线段两端点与该点构成的夹角类型,然后进行计算。如果点在线段的延长线上,则计算其与线段两端点的欧氏距离的最小值。

    代码如下:

        //点线距离函数
        public double PL(double x, double y, double x1, double y1, double x2, double y2)
        {
            double cross = (x2 - x1) * (x - x1) + (y2 - y1) * (y - y1); // |AB| * |AC|*cos(x)
            //double cross2 = (x1 - x2) * (x1 - x) + (y1 - y2) * (y1 - y); // |AB| * |AC|*cos(x)


            if (cross <= 0)  //积小于等于0,说明 角BAC 是直角或钝角
                return Math.Pow(((x - x1) * (x - x1) + (y - y1) * (y - y1) + 0.0), 0.5);

            double d2 = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1); // |AB|
            if (cross >= d2)  //角ABC是直角或钝角
                return Math.Pow(((x - x2) * (x - x2) + (y - y2) * (y - y2) + 0.0), 0.5);

            //锐角三角形
            double r = cross / d2;
            double px = x1 + (x2 - x1) * r;  // C在 AB上的垂足点(px,py)
            double py = y1 + (y2 - y1) * r;
            return Math.Pow(((x - px) * (x - px) + (y - py) * (y - py) + 0.0), 0.5); //两点间距离公式
        }

三、点面距离

话不多说,上代码:

                double a = 0;
                for (int i = 0; i < newploy.Count; i++)
                {
                    if (i + 1 < newploy.Count)
                    {
                        a = PL(Points[0].X, Points[0].X, newploy[i].X, newploy[i].Y, newploy[i + 1].X, newploy[i + 1].Y);
                        polyToLine.Add(a);
                    }
                    a = PL(Points[0].X, Points[0].X, newploy[i].X, newploy[i].Y, newploy[0].X, newploy[0].Y);
                    polyToLine.Add(a);
                }
                double min = 99999;
                //遍历寻找最小值
                for (int i = 0; i < polyToLine.Count; i++)
                {
                    if (Convert.ToDouble(polyToLine[i]) < min)
                    {
                        min = Convert.ToDouble(polyToLine[i]);
                    }
                    label4.Text = "点与面最小距离:" + Math.Round(min, 4);
                }

四、线面距离

            double k = (linePoint[1].Y - linePoint[0].Y) / (linePoint[1].X - linePoint[0].X);
            if (k == 0)
            {
                k = 0.000001;
            }
            double b = linePoint[0].Y - k * linePoint[0].X;
            //遍历多边形的各条边
            //polyPoints
            double a = 0;
            for (int i = 0; i < newploy.Count; i++)
            {
                if (i + 1 < newploy.Count)
                {
                    for (int j = linePoint[0].X; j < linePoint[1].X; j++)
                    {
                        a = PL(j, k * j + b, newploy[i].X, newploy[i].Y, newploy[i + 1].X, newploy[i + 1].Y);
                        lpdis.Add(a);
                    }
                }
                else
                {
                    for (int j = linePoint[0].X; j < linePoint[1].X; j++)
                    {
                        a = PL(j, k * j + b, newploy[i].X, newploy[i].Y, newploy[0].X, newploy[0].Y);
                        lpdis.Add(a);
                    }
                }
            }
            double min = 99999;
            //遍历寻找最小值
            for (int i = 0; i < lpdis.Count; i++)
            {
                if (Convert.ToDouble(lpdis[i]) < min)
                {
                    lpmin = Convert.ToDouble(lpdis[i]);
                }
                label4.Text = "线与面最小距离:" + Math.Round(lpmin, 4);
            }

五、线线距离

            double k = (linePoint[1].Y - linePoint[0].Y) / (linePoint[1].X - linePoint[0].X);
            if (k == 0)
            {
                k = 0.000001;
            }
            double b = linePoint[0].Y - k * linePoint[0].X;
            double dis = 0;
            if(linePoint[0].X< linePoint[1].X)
            {
                for (int i = linePoint[0].X; i < linePoint[1].X; i++)
                {
                    dis = PL(i, k * i + b, linePoint[2].X, linePoint[2].Y, linePoint[3].X, linePoint[3].Y);
                    lldis.Add(dis);
                }
            }
            else
            {
                for (int i = linePoint[1].X; i < linePoint[0].X; i++)
                {
                    dis = PL(i, k * i + b, linePoint[2].X, linePoint[2].Y, linePoint[3].X, linePoint[3].Y);
                    lldis.Add(dis);
                }
            }

六、面面距离

            int fircount = newploy.Count - secpolynum;
            List<Point> fir = null;
            List<Point> sed = null;
            for (int q = 0; q < fircount; q++)
            {
                if (fir == null) fir = new List<Point>();
                else
                {
                    fir.Add(newploy[q]);
                }

            }
            for (int p = fircount; p < newploy.Count; p++)
            {
                if (sed == null) sed = new List<Point>();
                else
                {
                    sed.Add(newploy[p]);
                }
            }

            //linePoint[0]
            //斜率
            double k = 0;
            double b = 0;
            double dis = 0;


            //遍历一多边形的边
            for (int i = 0; i < fir.Count; i++)
            {
                if (i + 1 < fir.Count)
                {
                    k = (fir[i + 1].Y - fir[i].Y) / (fir[i + 1].X - fir[i].X);
                    if (k == 0)
                    {
                        k = 0.000001;
                    }
                    b = fir[i].Y - k * fir[i].X;
                    //遍历二多边形的边
                    for (int m = 0; m < sed.Count; m++)
                    {
                        if (m + 1 < sed.Count)
                        {
                            double mi = 0;
                            double mx = 0;
                            if (sed[m].X > sed[m + 1].X)
                            {
                                mi = sed[m + 1].X;
                                mx = sed[m].X;
                            }
                            else
                            {
                                mx = sed[m + 1].X;
                                mi = sed[m].X;
                            }
                            for (int j = (int)mi; j < mx; j++)
                            {
                                dis = PL(j, k * j + b, sed[m].X, sed[m].Y, sed[m + 1].X, sed[m + 1].Y);
                                ppdis.Add(dis);
                            }
                        }
                        else
                        {
                            for (int j = sed[0].X; j < sed[m].X; j++)
                            {
                                dis = PL(j, k * j + b, sed[m].X, sed[m].Y, sed[0].X, sed[0].Y);
                                ppdis.Add(dis);
                            }
                        }
                    }
                }
                //最后一条
                else
                {
                    k = (newploy[i].Y - newploy[0].Y) / (newploy[i].X - newploy[0].X);
                    if (k == 0)
                    {
                        k = 0.000001;
                    }
                    b = newploy[0].Y - k * newploy[0].X;
                    for (int m = 0; m < sed.Count; m++)
                    {
                        if (m + 1 < sed.Count)
                        {
                            for (int j = sed[m].X; j < sed[m + 1].X; j++)
                            {
                                dis = PL(j, k * j + b, sed[m].X, sed[m].Y, sed[m + 1].X, sed[m + 1].Y);
                                ppdis.Add(dis);
                            }
                        }
                        else
                        {
                            for (int j = sed[0].X; j < sed[m].X; j++)
                            {
                                dis = PL(j, k * j + b, sed[m].X, sed[m].Y, sed[0].X, sed[0].Y);
                                ppdis.Add(dis);
                            }
                        }
                    }
                }

七、部分结果

  • 2
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: b'arcgis engine c#\xe7\x94\xbb\xe7\x82\xb9\xe7\xba\xbf\xe9\x9d\xa2' 是一个基于 C# 的 ArcGIS Engine 应用程序开发框架,可用于创建点、线、面等图形元素来表示地图数据。 ### 回答2: ArcGIS Engine是一款由美国Esri公司开发的软件开发工具包,它可以帮助开发人员将ArcGIS技术集成到自己开发的桌面应用程序和服务器应用程序中。通过ArcGIS Engine,开发人员能够访问和操作地图、空间数据、地理处理和地图服务等GIS资源。 ArcGIS Engine提供了一套完整的GIS工具箱,包括地图浏览、地图查询、空间分析、数据编辑、地理编码、网络分析等功能模块,这些模块可以让开发人员快速构建出功能齐全的GIS应用程序。同时,ArcGIS Engine还提供了各种编程接口,包括COM、.NET和Java等,使得开发人员能够使用自己熟悉的编程语言进行开发。 除此之外,ArcGIS Engine还支持多种开发环境,包括Visual Studio、Eclipse、Delphi等,这样使得开发人员可以在自己习惯的开发环境中进行开发。而且,ArcGIS Engine还具备完善的文档和示例库,这些资源可以帮助开发人员更快地了解和掌握如何使用ArcGIS Engine进行开发。 总的来说,ArcGIS Engine是一款非常优秀的GIS软件开发工具包,它可以帮助开发人员快速构建出功能强大的GIS应用程序,提高开发效率和开发质量。如果您是一位GIS开发人员,认真学习和使用ArcGIS Engine将会是您不错的选择。 ### 回答3: ArcGIS Engine C++ ArcGIS Engine是由Esri开发的一个软件平台,可以用于创建和部署专业级GIS应用程序。ArcGIS Engine C++是ArcGIS Engine平台上的一种编程语言,也是一种面向对象的编程语言。它使用C++语言作为主要的开发语言,可以利用ArcObjects来访问和管理地理空间数据,并将它们用于地图制作、空间分析等任务。 ArcGIS Engine C++提供给开发者一个底层的GIS编程框架,可以利用该框架自定义地理空间应用程序的各种组件,比如地图工具,地图符号,地图导航器等等。它可以让开发者自由组合各种地理空间组件,以达到用户所需的功能和体验,从而满足各种地理空间应用的需求。 ArcGIS Engine C++可以采用多种不同的方法开发,包括使用Esri提供的API和开发工具,或使用第三方的开发工具。当开发ArcGIS Engine C++应用程序时,可以使用ArcGIS Desktop应用程序中所使用的相同的技术和工具。同时,它可以与多种编程语言开发工具集成,可以使开发者与其他编程领域的开发人员进行协同作业,同时也可以轻松地实现外部与内部应用程序之间的交互和数据共享。 总之,ArcGIS Engine C++是一个功能强大的GIS开发框架,可以支持多种应用程序开发模式以及多种编程语言和工具,并提供完整的GIS解决方案。它可以让开发人员轻松快捷地开发出符合用户需求的GIS应用程序,以及实现与其他应用程序无缝衔接的数据共享和交互。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值