跟李沐学AI--深度学习之softmax

softmax

读取数据集

使用Fashion-MNIST数据集来验证模型之间的区别

# 使用Fashion-MNIST数据集
%matplotlib inline
import torch
# pytorch对于计算机视觉实现的库
import torchvision
from torch.utils import data
# 对于数据进行处理的模块
from torchvision import transforms
# 一些已经实现好的模块存放在d2l中
from d2l import torch as d2l
# 使用svg显示图片 这样清晰度更高
d2l.use_svg_display()


# 使用框架中的内置函数将数据集下载并读取到内存中
# 通过ToTensor实例将图像数据从PIL类型变换为32位浮点数格式
# 并除以255使得所有像素的数值均在01之间
# 预处理将图片转换为的tensord的形式
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(root="../data",train=True,transform=trans,download =True)
mnist_test = torchvision.datasets.FashionMNIST(root="../data",train=False,transform=trans,download=True)
len(mnist_train),len(mnist_test)

运行结果:
(60000, 10000)
# 第一张图片的形状 黑白色的所以rgb通道为1
mnist_train[0][0].shape

运行结果:
torch.Size([1, 28, 28])

对代码进行了修改,原代码没有办法显示titlle。

# 两个可视化数据集的函数

# 数字标签索引和文本名称之间的转换
def get_fashion_mnist_labels(labels):
    """返回数据集的文本标签"""
    text_labels=['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]
# 可视化样本的函数
def show_images(imgs,num_rows,num_cols,titles=None,scale=1.5):
    figsize = (num_cols*scale,num_rows*scale)
    _,axes = d2l.plt.subplots(num_rows,num_cols,figsize=figsize)
    axes = axes.flatten()
    for i,(ax,img) in enumerate(zip(axes,imgs)):
        if titles:
            ax.set_title(titles[i])
        if torch.is_tensor(img):
            #图片张量
            ax.imshow(img.numpy())
        else:
            #PIL图片
            ax.imshow(img)  
# 几个样本的图像以及相应的标签
# next拿到第一个小批量图片数据
X,y = next(iter(data.DataLoader(mnist_train,batch_size=18)))
show_images(X.reshape(18,28,28),2,9,titles=get_fashion_mnist_labels(y),scale=3.0)

在这里插入图片描述

# 读取一小批量数据  数据读取要比模型训练要更快
batch_size = 256
def get_dataloader_workers():
    """使用4个进程来读取的数据"""
    return 4
# shuffle是否随机,num_workers进程数
train_iter = data.DataLoader(mnist_train,batch_size,shuffle=True,num_workers=get_dataloader_workers())
# 使用timer()函数测试读取数据的时间
timer = d2l.Timer()
for X,y in train_iter:
    continue
f'{timer.stop():.2f}sec'

运行结果:
'1.09sec'
# 定义函数方便之后使用
def load_data_fashion_mnist(batch_size,resize=None):
    trans=[transforms.ToTensor()]
    if resize:
        trans.insert(0,transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root="../data",train=True,transform = trans,download=True)
    mnist_test= torchvision.datasets.FashionMNIST(root="../data",train=False,transform=trans,download=True)
    return(data.DataLoader(mnist_train,batch_size,shuffle=True,num_workers=get_dataloader_workers()),
        data.DataLoader(mnist_test,batch_size,shuffle=True,num_workers=get_dataloader_workers()))

softmax回归的从零开始实现

在这里插入图片描述

#从零开始实现
import torch
from IPython import display
from d2l import torch as d2l


# 每次随机读取256张图片
batch_size = 256
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

#将图像展平,长度为784的向量,具有10个类别,输出为10
num_inputs =784
num_outputs=10

# 随机初始化权重 均值为0,方差为0.01 行数等于输入的个数 列数等于输出的个数 需要计算梯度 requires_grad等于true
w=torch.normal(0,0.01,size=(num_inputs,num_outputs),requires_grad=True)
# 对于每一个输出都有一个偏移
b=torch.zeros(num_outputs,requires_grad=True)

# 知识回顾,给定一个矩阵,对所有元素求和
X=torch.tensor([[1.0,2.0,3.0],[4.0,5.0,6.0]])
X.sum(0,keepdim=True),X.sum(1,keepdim=True)
运行结果:
(tensor([[5., 7., 9.]]),
 tensor([[ 6.],
         [15.]]))
# 实现softmax操作 对于矩阵来讲按照每一行来做softmax
def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1,keepdim=True)
    return X_exp/partition  
   
# 将每个元素变成一个非负数,每行总和为1
# 均值为0,方差为12*5的矩阵
X= torch.normal(0,1,(2,5))
X_prob = softmax(X)
X_prob,X_prob.sum(1)

运行结果:
(tensor([[0.2224, 0.3368, 0.0387, 0.2479, 0.1543],
         [0.0465, 0.7085, 0.1058, 0.0670, 0.0721]]),
 tensor([1.0000, 1.0000]))
# 实现softmax回归模型
# X为256*784的矩阵
def net(X):
    return softmax(torch.matmul(X.reshape((-1,w.shape[0])),w)+b)
# 知识回顾 创建数据y_hat,其中包含2个样本在3个类别的预测概率,用y作为y_hat中概率的索引

# 两个真实的标号
y = torch.tensor([0,2])
# 预测值 对真实标号的预测值
y_hat = torch.tensor([[0.1,0.2,0.3],[0.3,0.4,0.5]])
y_hat[[0,1],y]

运行结果:
tensor([0.1000, 0.5000])
# 实现交叉熵损失函数
def cross_entropy(y_hat,y):
    return -torch.log(y_hat[range(len(y_hat)),y])
cross_entropy(y_hat,y)
运行结果:
tensor([2.3026, 0.6931])
# 分类问题 预测的类别和真实的类别是否是一样的

# 将预测类别和真实y元素进行比较
def accuracy(y_hat,y):
    """计算预测正确的数量"""
    if len(y_hat.shape)>1 and y_hat.shape[1]>1:
        # 每一行的最大值的下标 预测的类别
        y_hat = y_hat.argmax(axis=1)
    # 转换数据类型继续进行比较
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())
# 预测正确的样本数/y的长度= 预测正确的概率
accuracy(y_hat,y)/len(y)
运行结果:
0.5
# 评估在任意模型net在数据迭代器上的精度(准确率)
def evaluate_accuracy(net,data_iter):
    """计算在指定数据集上模型的精度"""
    if isinstance(net,torch.nn.Module):
        net.eval() #将模型设置为评估模式 不计算梯度 只进行前向传播
    metric = Accumulator(2) #正确预测数、预测总数
    for X,y in data_iter:
        metric.add(accuracy(net(X),y),y.numel())
    # 分类正确的样本数/总样本数
    return metric[0]/metric[1]
# 实现accumulator
class Accumulator:
    """在n个变量上累加"""
    def __init__(self,n):
        self.data = [0.0]*n
        
    def add(self,*args):
        self.data = [a+float(b) for a,b in zip(self.data,args)]
        
    def reset(self):
        self.data = [0.0]*len(self.data)
    
    def __getitem__(self,idx):
        return self.data[idx]

# 随机出来的模型以及我们测试的迭代器
evaluate_accuracy(net,test_iter)
运行结果:
0.0672
# 对整个数据迭代了一次
# softmax回归的训练
def train_epoch_ch3(net,train_iter,loss,updater):
    if isinstance(net,torch.nn.Module):
        # 开启训练模式
        net.train()
    #长度为3的迭代器 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X,y in train_iter:
        y_hat = net(X)
        l = loss(y_hat,y)
        # 使用模型 updater更新模型参数的常用函数,接受批量大小作为参数
        if isinstance(updater,torch.optim.Optimizer):
            updater.zero_grad()
            l.backward()
            updater.step()
            # 将数据放入累加器中
            metric.add(
            float(1)*len(y),accuracy(y_hat,y),y.size().numel())
        # 自行实现
        else:
            # 此时损失l是一个向量
            l.sum().backward()
            updater(X.shape[0])
            metric.add(float(l.sum()),accuracy(y_hat,y),y.numel())
    # loss累加/样本数 分类正确的样本/样本数
    return metric[0]/metric[2],metric[1]/metric[2]
# 动画中绘制数据的类 看到数据的变化
class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)
# 训练函数
def train_ch3(net,train_iter,test_iter,loss,num_epochs,updater):
    # 可视化
    animator = Animator(xlabel='epoch',xlim=[1,num_epochs],ylim=[0.3,0.9],legend=['train loss','train acc','test acc'])
    for epoch in range(num_epochs):
        # 训练误差
        train_metrics = train_epoch_ch3(net,train_iter,loss,updater)
        # 在测试数据集上评估精度
        test_acc = evaluate_accuracy(net,test_iter)
        # 可视化进行显示
        animator.add(epoch+1,train_metrics+(test_acc,))
    train_loss,train_acc=train_metrics
 
 # 小批量随机梯度下降来优化模型的损失函数
lr = 0.1
def updater(batch_size):
    # 梯度下降来优化损失函数
    return d2l.sgd([w,b],lr,batch_size)  
 
 # 训练10个周期
num_epochs = 10
train_ch3(net,train_iter,test_iter,cross_entropy,num_epochs,updater) 

在这里插入图片描述

# 预测
def predict_ch3(net, test_iter, n=6):  
    """预测标签"""
    for X, y in test_iter:
        break
    # 真实标号
    trues = d2l.get_fashion_mnist_labels(y)
    # 预测标号
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

在这里插入图片描述

softmax的简洁实现

import torch
from torch import nn
from d2l import torch as d2l


batch_size = 256
# 将数据放入数据迭代器
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

# pyTorvh不会隐式的调整输入的形状 
# 定义展平层flatten在线性层前调整网络输入的形状 转换成一个2D,第0位保留,其余的转换成一个向量
# 线形层,输入是784 输出是10
net = nn.Sequential(nn.Flatten(),nn.Linear(784,10))
# 每一层初始化权重
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight,std=0.01)
net.apply(init_weights);

# 交叉熵 没有参数的化会返回一个标量
loss = nn.CrossEntropyLoss(reduction='none')

trainer = torch.optim.SGD(net.parameters(),lr=0.1)

num_epochs=10
d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,trainer)

在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值