寡头垄断模型

1.斯塔克尔伯格模型(产量领导者)

设反需求函数为p(Y),领导者企业先做出产量决定y_1,随后的跟随者企业根据领导者企业的产量做出产量决策y_2,此时市场价格为p(y_1+y_2)

厂商2的利润函数为:

\pi(y_2)=p(y_1+y_2)y_2-c(y_2)

最大化厂商2的利润后可以得到y_1y_2的关系,设为y_2=f(y_1)

随后将这个关系代入厂商1的利润函数中

\pi(y_1)=p(y_1+y_2)y_1-c(y_1)

根据最大化条件可以得到y_1y_2的值。

2.价格领导者

价格领导者问题情况下,小企业只能接受价格作为p存在,因为小企业产量太小无法影响到市场价格,那么就需要在价格p下最大化自身的利润:

\pi(y_2)=py_2-c(y_2)

在确定了y_2之后,为了维持价格,价格领导者需要按照市场需求曲线控制产量

那么p(y_1+y_2)=p

可以解出此时的y_1

那么价格领导者实现的利润为\pi(y_1)=py_1-c(y_1)

价格领导者先行动,为了确定它的利润是最大的,那么就需要控制价格p,使其对自己最有利,那么可以将p设置为未知,然后又厂商2的利润函数和需求函数求出y_1y_2的函数,然后代入价格领导者的利润当中,使得领导者厂商利润最大化即可。

3.古诺模型

古诺模型的特点是两个厂商同时设定产量

假设厂商1设定产量为y_1

假设厂商2设定产量为y_2

此时市场价格为p(y_1+y_2)

厂商1的利润函数为\pi(y_1)=y_1p(y_1+y_2)-c(y_1)

厂商2的利润函数为\pi(y_2)=y_2p(y_1+y_2)-c(y_2)

两者同时达到最大时可以得到两组y_1y_2的方程组,解出的解就是该均衡的结果。

4.多家厂商的古诺模型

存在多家厂商时,

假设厂商1设定产量为y_1

假设厂商2设定产量为y_2

……

设厂商n设定产量为y_n

此时市场价格为p(y_1+y_2+...+y_n)

厂商1的利润函数为\pi(y_1)=y_1p(y_1+y_2+...+y_n)-c(y_1)

厂商2的利润函数为\pi(y_2)=y_2p(y_1+y_2+...+y_n)-c(y_2)

……

厂商n的利润函数为\pi(y_n)=y_np(y_1+y_2+...+y_n)-c(y_n)

n个函数同时达到最大时可以得到n组方程组,解出的解就是该均衡的结果。

5.特殊形式的古诺模型

假设价格函数为p=a-by,成本为常数c

那么只有1个厂商时,为垄断产量\frac{a-c}{2b}

如果有两个厂商时,每个厂商的产量为\frac{a-c}{3b}

……

n个厂商时,每个厂商的产量为\frac{a-c}{(n+1)b}

当n足够大的时候,就是完全竞争市场。

6.伯特兰模型

伯特兰模型非常简单,当厂商1的要价高于成本c的时候,厂商2的要价为c,则厂商1面临的需求为0,厂商2面临全部的市场。因此,所有厂商都会趋向于把价格压低为成本价,类似于完全竞争市场的价格。

7.串谋与背叛

如果市场上存在两个厂商,那么它们两个构成的行业达成的均衡,肯定要比两家串谋合成一家所获取的垄断利润小的多,所以他们会考虑串谋来攫取垄断利润。

如果其中一家厂商稍稍选择增加产量,会使得自身利润增加,另一家保持产量不变的企业由于市场价格下跌会利益受损,垄断集团内部可能存在分崩离析的倾向。

8.惩罚措施

如果垄断集团内部存在背叛行为,那么会导致后续合作不再进行转向古诺模型。重复博弈中,涉及持续获得垄断利润的贴现和当期获得背叛利润,后续获得古诺利润的比较。一般来说,利率足够小的时候,串谋是比较稳定的。举个例子,就比如利率无穷大的情况下,明天的钱基本上一文不值的时候,这一期选择背叛,获得实惠就是最佳选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值