机器学习数学之模型检验

一、回归检验

使用均方误差(MSE:全称Mean Square Error),误差越小,精度越高,模型越好。

二、分类问题的验证

(一)整体精度

分类结果有四种

则分类的精度可被计算为

(二)精确率和召回率

设有100个数据,其中95个是Negative。那么,哪怕出现模型把数据全部分类为Negative的极端情况,Accuracy值也为0.95,也就是说模型的精度是95%。但不能说其为好模型。因此要引入其他指标。

1、精确率 Precision

它的含义是在被分类为Positive的数据中,实际就是Positive的数据所占的比例。值越高,说明分类错误越少。Precision is the proportion of +ve predictions that are correct.

2、召回率 Recall

它的含义是在Positive数据中,实际被分类为Positive的数据所占的比例。这个值越高,说明被正确分类的数据越多。Recall is the proportion of actually +ve documents that are predicted correctly.

精确率和召回率都很高的模型就是一个好模型,但一般来说,精确率和召回率会一个高一个低,需要我们取舍。

(三)F值

该指标考虑到了精确率和召回率的平衡,也有很多人把F1值(F1-Score)的表达式写成下面这样:

F1值是精确率和召回率的调和平均值,且更接近两者中更低的那个。

除F1值之外,还有一个带权重的F值指标:

我们可以认为F值指的是带权重的F值,当权重为1时才是刚才介绍的F1值。

TN为主来计算精确率和召回率的表达式是这样的:

当数据不平衡时,使用数量少的那个会更好。

对于回归和分类,我们都可以这样来评估模型。

把全部训练数据分为测试数据和训练数据的做法称为交叉验证,交叉验证的方法中,尤为有名的是K折交叉验证。即:

● 把全部训练数据分为K份。

● 将K-1份数据用作训练数据,剩下的1份用作测试数据。

● 每次更换训练数据和测试数据,重复进行K次交叉验证。

● 最后计算K个精度的平均值,把它作为最终的精度。

假如我们要进行4折交叉验证,那么就会这样测量精度

三、正则化

(一)过拟合 overfitting

模型只能拟合训练数据的状态被称为过拟合,避免过拟合的方法有:

● 增加全部训练数据的数量

● 使用简单的模型

● 正则化

(二)正则化

如回归的目标函数为:

向这个目标函数增加下面这样的正则化项:

则得到

对这个新的目标函数进行最小化,这种方法就称为正则化。其中,m是参数的个数,j一般从1开始取,即一般来说不对θ0应用正则化,θ0这种只有参数的项称为偏置项。 λ是决定正则化项影响程度的正的常数,这个值需要我们自己来定。

正则化的效果如下:

首先把目标函数分成两个部分,C(θ)是本来就有的目标函数项,R(θ)是正则化项。

目标函数C(θ)在没有正则化项时的形状来看,θ1=4.5附近是最小值。R(θ)为过原点的简单二次函数。

而实际的目标函数是这两个函数之和E(θ)=C(θ)+R(θ),图像如下,最小值是θ1=0.9。

与加正则化项之前相比,θ1更接近0。这就是正则化的效果。它可以防止参数变得过大,有助于参数接近较小的值。这正是通过减小不需要的参数的影响,将复杂模型替换为简单模型来防止过拟合的方式。

而为了防止参数的影响过大,训练时增加λ。λ为0,相当于不需要正则化;λ越大,约束函数越厉害。

(三)分类的正则化

反转符号是为了将最大化问题替换为最小化问题,在更新参数时就要像回归一样,与微分的函数的符号反方向移动才行。

(四)包含正则化项的表达式的微分

新的目标函数如下:

要对其进行微分,前者在回归时已求过微分形式,为:

对正则化部分的微分为:

最终的微分结果为

代入到参数更新表达式里去则为:

区分两种情况是因为,一般不对θ0应用正则化,R(θ)对θ0微分的结果为0,所以j=0时表达式中的λθj就消失了。

逻辑回归的流程也是一样的。原来的目标函数是C(θ),正则化项是R(θ),现在对E(θ)进行微分。

得出

这种方法叫L2正则化,还有L1正则化方法,它的正则化项R是这样的:

L1正则化的特征是被判定为不需要的参数会变为0,从而减少变量个数。而L2正则化不会把参数变为0。L2正则化会抑制参数,使变量的影响不会过大,而L1会直接去除不要的变量。

四、学习曲线

(一)欠拟合 underfitting

主要原因就是模型相对于要解决的问题来说太简单了

(二)区分过拟合和欠拟合的方法

如果模型过于简单,那么随着数据量的增加,误差也会一点点变大。换句话说就是精度会一点点下降。如下图:

数据量为2时,可以完美拟合,误差为0;如果把10个数据全部训练,尽可能拟合数据,则误差会增大。

以数据的数量为横轴、以精度为纵轴,形状大致为:

假设还有测试数据,我们用这些测试数据来评估各个模型,之后用同样的方法求出精度,并画成图

将两份数据的精度用图来展示后,如果是这种形状,就说明出现了欠拟合的状态,也叫作高偏差。

图中需要注意的点在这里

而在过拟合的情况下,图是这样的。也叫作高方差。随着数据量的增加,使用训练数据时的精度一直很高,而使用测试数据时的精度一直没有上升到它的水准。

像这样展示了数据数量和精度的图称为学习曲线

在知道模型精度低,却不知道是过拟合还是欠拟合的时候,可通过学习曲线判断,接下来采取相应的对策以便改进模型。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习是一种通过使用统计学和数学模型来教会机器进行任务的方法。其中,数学机器学习中扮演着重要的角色。 在机器学习中,数学提供了一种理论基础和工具,用于分析和推导机器学习算法的性质。例如,数学中的线性代数和概率论被广泛应用于机器学习中的矩阵运算和概率模型。通过数学的分析,我们可以证明算法的收敛性、稳定性和误差上界等性质,从而更好地理解算法并优化其性能。 此外,机器学习也经常使用数学优化方法来解决模型训练过程中的参数估计和优化问题。通过最小化损失函数,我们可以使用数学优化方法来找到模型最优的参数组合。这些数学方法包括梯度下降、牛顿法和拟牛顿法等。 另一方面,视觉也是机器学习中一个重要的应用领域。在计算机视觉中,机器学习算法被用于处理和分析图像和视频数据。通过机器学习方法,机器可以学习从图像中提取特征,例如边缘、纹理和形状,并用于物体识别、目标检测和图像分类等任务。 机器学习在计算机视觉中的应用涵盖了很多领域,例如人脸识别、图像分割、目标追踪和图像生成等。通过机器学习,我们可以使计算机更好地理解和处理视觉信息,从而实现自动化和智能化的图像处理和分析。 综上所述,数学机器学习中起着重要的角色,同时机器学习也广泛应用于数学在视觉领域的实际问题解决中。这种交叉应用促进了机器学习和视觉领域的发展,并为我们提供了更强大的工具和方法来解决现实世界的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值