ENVI的几种图像拉伸方式

文章详细介绍了ENVI软件中几种不同的遥感影像拉伸方法,包括线性拉伸、直方图均衡化、直方图匹配、高斯拉伸和平方根拉伸,每种方法的特点和适用场景都有所阐述,有助于根据DN值分布选择合适的影像增强技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

不同遥感影像的DN值分布情况不同,在对影像处理完后。相应的DN值分布也会发生一些变化。因此,总结了一些ENVI的拉伸方式的不同与区别。根据DN值的分布情况,以及实际效果选择合适的拉伸方式。仅供参考,如有错误,敬请指正!

目录

前言

一、线性拉伸(Linear)

1.线性拉伸(Linear)

 2.优化线性拉伸(Optimized Linear)

二、直方图(Histogram)

1.直方图均衡化(Histogram Equalization)

2.直方图匹配(Histogram Matching)

三、高斯拉伸(Gaussian)

四、平方根拉伸(SquareRoot)

参考


一、线性拉伸(Linear)

1.线性拉伸(Linear)

linear拉伸包括线性拉伸和百分比拉伸。liner 0-255是线性拉伸,默认指的是将图像的DN值拉伸到0-255范围内。linear 1%和2%指的是百分比的图像拉伸,linear 2%就是拉伸时去除小于2%和大于98%的部分,这些部分被认为是异常值,会在拉伸时去除。除此之外,ENVI还提供了linear 5%。

线性拉伸的效果明显的体现出将低于和高于规定百分比的DN值去除,这些DN值往往作为异常出现,在需要提取分析异常值时,不应采用线性拉伸方式。

图1 linear 2%拉伸

 2.优化线性拉伸(Optimized Linear)

ENVI还提供了优化线性拉伸。相比普通线性拉伸,优化的线性拉伸提供了更多的参数来控制输出的平均值,暗部和亮部。

二、直方图(Histogram)

1.直方图均衡化(Histogram Equalization)

直方图均衡化是非线性拉伸,是一种典型的图像

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值