论文笔记-深度学习的遥感变化检测综述:文献计量与分析

0 摘要

与传统遥感变化检测不同,基于深度学习的变化检
测提取遥感影像的深度差异特征,无需构建特征工程,检测精度和效率均有所提高。作者结合文献计量学全面
分析本领域研究现状和热点,发现基于深度学习的变化检测在国内机构学者的主导下快速发展并取得了大量研
究成果。并指出未来变化检测的发展趋势和需克服的问题。

1 引言

研究变化检测为了准确快速地获取这些变化信息对于生态环境监测、灾害管理、农业生产、环境保护和军事国防等具有重要意义。
遥感变化检测需要至少两个时期的图像,其流程更为复杂,包括:图像间高精度几何配准,辐射、大气、物候相对归一化处理,变化特征提取,变化区域及变化类型确定以及精度验证等步骤。国内外学者研发了多种变化检测方法,如基于代数计算、图像变换和分类后比较的方法。这些方法原理简单、可操作性强,但是对使用的特征或分类结果敏感,易出现较高漏检率和误差累积问题,在精度、自动化或普适性方面目前尚不能满足大量复杂应用场景的需求。基于深度学习的遥感变化检测方法通常利用神经网络模型提取遥感图像 (或图像间的) 的深度 (差异) 特征,并在学习策略指导下训练变化检测模型,根据检测方案输出结果。其流程如下:
在这里插入图片描述
作者从文献计量分析、分析粒度、以及重要问题探索等多个方面对基于深度学习的遥感变化检测进行综述,以期为未来遥感变化检测研究提供参考。

2 文献计量分析

本部分计量分析使用的英文数据库为 WOS(Web of Science) 核心合集数据库,检索策略为:所有字段包含 (“remote sensing”或“remotely sensed”)和“change detection”和 (“deep learning”或“network”);文献类型选择“论文”、“综述论文 ” 和 “ 在线发表 ”; 引文索引选择 SCI-EXPANDED和SSCI。中文数据库为CNKI,检索策略为:主题包含“变化检测”和 (“深度学习”或“网络”);文献类型选择“学术期刊”。时间范围为 2000年1月1日至2021年12月31日。通过全文阅读,剔除非相关文献,共获得 258 篇英文和 94 篇中文论文(这些论文的详细信息已经上传至:https://github.com/thebinyang/ChangeDetectionReview[2022-04-07])。

2.1 文献结构

自2016 年以来,国际上有关深度学习的遥感变化检测研究呈现持续快速增长趋势,年均增长率约为99.05%。深度学习已经成为遥感变化检测的研究热点,大量研究利用卷积神经网络CNN、自动编码器AE、和生成式对抗网络GAN等实现高精度遥感影像变化检测。近

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值