0 摘要
本文在总结多时相遥感数据源从同构到异构、变化检测模型从传统到智能、变化检测应用从理论到落地过程中存在问题的基础上,以光学遥感影像变化检测任务为例,梳理和分析了人工智能时代下变化检测技术的发展历程。从无监督、监督、弱监督3个方面探讨了遥感变化检测从传统到前沿技术的转型特点与趋势,并进一步提出了未来需重点突破模型的物理可解释性、泛化及迁移能力、跨数据—跨场景—跨领域应用水平等关键问题。
1 引言
变化检测技术根据应用目的可分为:异常变化检测、二类变化检测、多类变化检测和时序变化检测。其中,异常和二类变化检测主要关注变化区域的主动探测问题,多类变化检测在实现变化区域探测的同时进行变化类型的细分,而时序变化检测则主要关注变化时间定位及变化趋势。根据变化检测与样本的结合程度,又可进一步分为无监督、监督和弱监督变化检测3种类型。
由于全球气候变化效应显现和人类活动的频繁,使得遥感变化检测的需求愈加迫切,单纯依赖光谱变化的传统方法受到了极大的挑战,难以有效直接迁移与应用,进而导致实际算法性能的降低和较高漏检、错检误差的产生。而机器学习方法的直接引入与应用,易造成唯方法论的短板,导致检测精度提升快但解释性差、与实际地物变化的遥感机理关联性弱、模型泛化和迁移能力差等问题。
针对具体应用场景和任务需求,在充分考虑光谱变化的同时,引入更多的对象—语义—地学知识支撑,设计出具有强解释性、高鲁棒性、高自动化和高精度的变化检测技术,以有效地发现、识别和描述地表真实变化信息,是目前遥感领域重点关注的热门研究方向之一。
2 发展阶段与演变趋势
遥感变化检测历经了从传统算法到智能化算法的跨越式发展,可归纳为3个阶段:数据驱动的变化检测阶段、模型驱动的变化检测阶段和数据—模型—知识共同驱动的变化检测阶段。
2.1 数据驱动的变化检测阶段
采用传统的影像处理与分析技术,如波段代数计算、特征变换、指数提取、分类等进行变化提取。典型的算法主要依赖于前后时相遥感影像光谱反射率及其衍生指数 (如归一化植被指数等) 的比较,包括波段差值法、比值法、回归分析法、变化矢量分析 (CVA)、主成分变换 (PCA)、独立主成分变换(ICA)、分类后比较法等。
1)主要面向中、低分辨率遥感影像,基于独立像素假设,变化检测过程中较少考虑像素间的空间相关性;
2)多为数据驱动,该阶段的数据通常是指“小数据”或者是特定类型数据;
3)未完全使用先验信息