第十题:正则表达式匹配

题目描述

给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 '.''*' 的正则表达式的匹配。

‘.’ 匹配任意单个字符

‘*’ 匹配零个或多个前面的那一个元素

所谓匹配,是要涵盖整个输入字符串(s),而不是部分字符串。

说明:

's' 可能为空,且只包含从 a-z 的小写字母。
'p' 可能为空,且只包含从 a-z 的小写字母,以及字符 ., *

实现思路

我们可以使用动态规划来解决这个问题。定义一个二维数组 dp,其中 dp[i][j] 表示 s 的前 i 个字符是否能够与 p 的前 j 个字符匹配。初始化 dp[0][0] = true,表示空字符串与空模式匹配。对于 p 中每一个位置 j,如果 p[j-1]*,那么 dp[0][j] 的值取决于 p[j-2] 是否可以匹配 s 的空串。

对于非边界情况,我们有:

  • 如果 p[j-1] != '*',那么 dp[i][j] 的值取决于 s[i-1] 是否能与 p[j-1] 匹配,并且 dp[i-1][j-1] 是否为 true
  • 如果 p[j-1] == '*',那么 dp[i][j] 的值取决于 p[j-2] 是否能与 s[i-1] 匹配,并且 dp[i][j-2] 是否为 true,或者 dp[i][j-1] 是否为 true

算法实现

C

#include <stdbool.h>
#include <string.h>

bool isMatch(char *s, char *p) {
    int m = strlen(s);
    int n = strlen(p);
    bool dp[m + 1][n + 1];
    memset(dp, false, sizeof(dp));
    dp[0][0] = true;

    for (int j = 1; j <= n; ++j) {
        if (p[j - 1] == '*') {
            dp[0][j] = dp[0][j - 2];
        }
    }

    for (int i = 1; i <= m; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (p[j - 1] == '.' || s[i - 1] == p[j - 1]) {
                dp[i][j] = dp[i - 1][j - 1];
            } else if (p[j - 1] == '*') {
                dp[i][j] = dp[i][j - 2] || ((s[i - 1] == p[j - 2] || p[j - 2] == '.') && dp[i - 1][j]);
            }
        }
    }
    return dp[m][n];
}

Python

def isMatch(s: str, p: str) -> bool:
    m, n = len(s), len(p)
    dp = [[False] * (n + 1) for _ in range(m + 1)]
    dp[0][0] = True

    for j in range(1, n + 1):
        if p[j - 1] == '*':
            dp[0][j] = dp[0][j - 2]

    for i in range(1, m + 1):
        for j in range(1, n + 1):
            if p[j - 1] == '.' or s[i - 1] == p[j - 1]:
                dp[i][j] = dp[i - 1][j - 1]
            elif p[j - 1] == '*':
                dp[i][j] = dp[i][j - 2] or ((s[i - 1] == p[j - 2] or p[j - 2] == '.') and dp[i - 1][j])
    return dp[m][n]

Java

public boolean isMatch(String s, String p) {
    int m = s.length();
    int n = p.length();
    boolean[][] dp = new boolean[m + 1][n + 1];
    dp[0][0] = true;

    for (int j = 1; j <= n; ++j) {
        if (p.charAt(j - 1) == '*') {
            dp[0][j] = dp[0][j - 2];
        }
    }

    for (int i = 1; i <= m; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (p.charAt(j - 1) == '.' || s.charAt(i - 1) == p.charAt(j - 1)) {
                dp[i][j] = dp[i - 1][j - 1];
            } else if (p.charAt(j - 1) == '*') {
                dp[i][j] = dp[i][j - 2] || ((s.charAt(i - 1) == p.charAt(j - 2) || p.charAt(j - 2) == '.') && dp[i - 1][j]);
            }
        }
    }
    return dp[m][n];
}

时间复杂度

时间复杂度为 O(mn),其中 m 是 s 的长度,n 是 p 的长度。空间复杂度也为 O(mn)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰魄雕狼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值