如何使用api接入星火大模型(超详细,亲测有效!)

如何使用api接入星火大模型(超详细,亲测有效!)

1.进入星火:https://xinghuo.xfyun.cn/desk图1

2.点击图一api接入

图2

3.点击图2免费试用

图3

3.点击图3免费试用

图4

4.点击图4+号,创建应用

图5

5.填写后提交即可创建应用,然后返回平台首页

图6
在这里插入图片描述

6.点击控制台

图7

7.点击创建的应用,查看APPID,APISecret和APIKey

在这里插入图片描述

8.调用代码如下,需将main函数中APPID,APISecret和APIKey替换成自己的。

# coding: utf-8
import _thread as thread
import os
import time
import base64

import base64
import datetime
import hashlib
import hmac
import json
from urllib.parse import urlparse
import ssl
from datetime import datetime
from time import mktime
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time

import websocket
import openpyxl
from concurrent.futures import ThreadPoolExecutor, as_completed
import os


class Ws_Param(object):
    # 初始化
    def __init__(self, APPID, APIKey, APISecret, gpt_url):
        self.APPID = APPID
        self.APIKey = APIKey
        self.APISecret = APISecret
        self.host = urlparse(gpt_url).netloc
        self.path = urlparse(gpt_url).path
        self.gpt_url = gpt_url

    # 生成url
    def create_url(self):
        # 生成RFC1123格式的时间戳
        now = datetime.now()
        date = format_date_time(mktime(now.timetuple()))

        # 拼接字符串
        signature_origin = "host: " + self.host + "\n"
        signature_origin += "date: " + date + "\n"
        signature_origin += "GET " + self.path + " HTTP/1.1"

        # 进行hmac-sha256进行加密
        signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
                                 digestmod=hashlib.sha256).digest()

        signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')

        authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'

        authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')

        # 将请求的鉴权参数组合为字典
        v = {
            "authorization": authorization,
            "date": date,
            "host": self.host
        }
        # 拼接鉴权参数,生成url
        url = self.gpt_url + '?' + urlencode(v)
        # 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致
        return url


# 收到websocket错误的处理
def on_error(ws, error):
    print("### error:", error)


# 收到websocket关闭的处理
def on_close(ws):
    print("### closed ###")


# 收到websocket连接建立的处理
def on_open(ws):
    thread.start_new_thread(run, (ws,))


def run(ws, *args):
    data = json.dumps(gen_params(appid=ws.appid, query=ws.query, domain=ws.domain))
    ws.send(data)


# 收到websocket消息的处理
def on_message(ws, message):
    # print(message)
    data = json.loads(message)
    code = data['header']['code']
    if code != 0:
        print(f'请求错误: {code}, {data}')
        ws.close()
    else:
        choices = data["payload"]["choices"]
        status = choices["status"]
        content = choices["text"][0]["content"]
        print(content,end='')
        if status == 2:
            print("#### 关闭会话")
            ws.close()


def gen_params(appid, query, domain):
    """
    通过appid和用户的提问来生成请参数
    """

    data = {
        "header": {
            "app_id": appid,
            "uid": "1234",           
            # "patch_id": []    #接入微调模型,对应服务发布后的resourceid          
        },
        "parameter": {
            "chat": {
                "domain": domain,
                "temperature": 0.5,
                "max_tokens": 4096,
                "auditing": "default",
            }
        },
        "payload": {
            "message": {
                "text": [{"role": "user", "content": query}]
            }
        }
    }
    return data


def main(appid, api_secret, api_key, gpt_url, domain, query):
    wsParam = Ws_Param(appid, api_key, api_secret, gpt_url)
    websocket.enableTrace(False)
    wsUrl = wsParam.create_url()

    ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open)
    ws.appid = appid
    ws.query = query
    ws.domain = domain
    ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})


if __name__ == "__main__":
    main(
        appid="",
        api_secret="",
        api_key="",
        #appid、api_secret、api_key三个服务认证信息请前往开放平台控制台查看(https://console.xfyun.cn/services/bm35)
        gpt_url="wss://spark-api.xf-yun.com/v3.5/chat",
        # Spark_url = "ws://spark-api.xf-yun.com/v3.1/chat"  # v3.0环境的地址
        # Spark_url = "ws://spark-api.xf-yun.com/v2.1/chat"  # v2.0环境的地址
        # Spark_url = "ws://spark-api.xf-yun.com/v1.1/chat"  # v1.5环境的地址
        domain="generalv3.5",
        # domain = "generalv3"    # v3.0版本
        # domain = "generalv2"    # v2.0版本
        # domain = "general"    # v2.0版本
        query="给我写一篇100字的作文"
    )

9.如果报错:AttributeError: module ‘websocket’ has no attribute ‘enableTrace’,需要:pip install --upgrade websocket-client

10.请求成功!

讯飞星火认知大模型提供了Java后端接口,开发者可以使用API使用讯飞星火认知大模型。以下是使用Java讯飞星火认知大模型API的示例代码: ```java import com.iflytek.cloud.speech.*; import com.iflytek.cloud.speech.util.*; public class Main { public static void main(String[] args) { // 设置讯飞开发者账号信息 SpeechUtility.createUtility("appid=YOUR_APPID"); // 创建SpeechRecognizer对象 SpeechRecognizer recognizer = SpeechRecognizer.createRecognizer(); // 设置参数 recognizer.setParameter(SpeechConstant.DOMAIN, "iat"); recognizer.setParameter(SpeechConstant.LANGUAGE, "zh_cn"); recognizer.setParameter(SpeechConstant.ACCENT, "mandarin"); // 开始识别 recognizer.startListening(new RecognizerListener() { @Override public void onResult(RecognizerResult recognizerResult, boolean b) { // 处理识别结果 System.out.println(recognizerResult.getResultString()); } @Override public void onError(SpeechError speechError) { // 处理错误信息 System.out.println(speechError.getErrorDescription()); } @Override public void onBeginOfSpeech() { // 开始说话回调 } @Override public void onEndOfSpeech() { // 结束说话回调 } @Override public void onVolumeChanged(int i, byte[] bytes) { // 音量变化回调 } @Override public void onEvent(int i, int i1, int i2, String s) { // 事件回调 } }); } } ``` 请注意,上述代码中的`YOUR_APPID`需要替换为您自己的讯飞开发者账号的AppID。此外,您还可以根据需要设置其他参数,例如识别领域、语言和口音等。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值