【人工智能】Windows上部署并在另一台设备远程调用Deepseek模型

1.Windows上模型部署

根据之前所述的deepseek部署教程,在性能较好的windows电脑上进行本地模型部署。

参考:【人工智能】Deepseek在windows电脑上的部署-CSDN博客https://blog.csdn.net/weixin_56649785/article/details/145534650?spm=1001.2014.3001.5501

主要完成:

1.下载ollama并安装

2.修改模型存放路径

3.下载自己所需的ollama模型

2.Windows上配置说明

        在完成上述操作后,我们就可以完成在本地调用ollama模型了;为了完成远程调用,需要对我们完成第一步的电脑进行一些配置:

a.设置环境变量

        为了让局域网内的其他设备能够访问Ollama服务,需要设置环境变量OLLAMA_HOST,使其监听局域网的IP地址。具体步骤如下:

  • 右键点击“此电脑”或“计算机”,选择“属性”。
  • 在左侧点击“高级系统设置”。
  • 在弹出的窗口中,点击“环境变量”。
  • 在“系统变量”部分,点击“新建”。
  • 在“变量名”输入框中输入OLLAMA_HOST,在“变量值”输入框中输入0.0.0.0,然后点击“确定”。
  • 同理,添加OLLAMA_ORIGINS,变量值:*,然后全部点击确定。
  • 设置完成后,关闭并重新打开命令行窗口与ollama软件,使新的环境变量生效。

b. 开放防火墙端口

        为了使其他设备能够访问Ollama服务,还需要在Windows防火墙中开放Ollama服务使用的端口(例如11434)。可以通过图形界面或命令行来完成设置。图形界面设置步骤如下:

  • 打开“控制面板”,搜索并选择“Windows Defender 防火墙”。
  • 在左侧点击“高级设置”,进入高级防火墙设置页面。
  • 在左侧菜单中,点击“入站规则”,然后在右侧点击“新建规则”。
  • 选择“端口”作为规则类型,然后点击“下一步”。
  • 选择“TCP”,并在“特定本地端口”一栏中输入11434,然后点击“下一步”。
  • 选择“允许连接”,点击“下一步”。
  • 根据需求选择应用的网络类型(域、专用或公用),点击“下一步”。
  • 为这条规则命名(如“Allow Ollama Port 11434”),然后点击“完成”。

         完成上述设置后,Ollama服务应该可以通过局域网中的其他设备访问。

3.同一局域网下访问设备设置

        以自己性能较差的电脑作为访问设备对模型进行访问,完成远程调用,这里依然是在同一局域网下操作。

        如何测试两台设备处于统一局域网,参考:

如何判断两台设备是否在同一局域网内_如何判断两个设备在同一局域网-CSDN博客https://blog.csdn.net/guojunxiu/article/details/88778766

a.下载Chatbox

        在我们自己需要提问的电脑上进入chatbox官网下载chatbox软件并安装。

b.软件设置

        (1)首先获取完成了步骤一电脑的局域网络ip地址,这里确保两台设备在同一网络的前提下,使用Win+R输入cmd打开终端,使用ipconfig来查询该电脑的ip地址。如图,我这里使用wifi故ip地址为192.168.31.195。

        (2)下载完成后chatbox后如图所示,选择模型提供方为OLLAMA API,将API域名处中间的127.0.0.1修改为刚才查询到的ip地址。此时就可以选择模型了,这里选择到的模型就是之前电脑上的模型。

 此时,就可以进行测试了,测试参考:

【人工智能】Deepseek小模型测试-CSDN博客https://blog.csdn.net/weixin_56649785/article/details/143617643?spm=1001.2014.3001.5501

4.不同网络下访问设备设置

1. 安装Cpolar

        要实现Ollama的外网访问,可以使用Cpolar进行内网穿透。首先,从Cpolar的官方网站注册一个账号,并下载最新版本的Cpolar安装程序。安装完成后,使用Cpolar账号登录。

2. 配置Cpolar隧道

登录Cpolar后,在Web配置界面中创建一个新的隧道。具体步骤如下:

  • 登录Cpolar的Web UI管理界面。
  • 点击左侧仪表盘的“隧道管理”——“创建隧道”。
  • 填写隧道名称(可自定义),选择协议,并设置本地地址为Ollama服务的端口(例如11434)。
  • 选择域名类型为二级子域名,并设置地区为中国VIP。
  • 复制并保留生成的二级子域名。

3. 配置Ollama服务

在Windows上,还需要配置Ollama服务以支持外网访问。具体步骤如下:

  • 点击“控制面板”,进入编辑系统环境变量。
  • 在系统变量下新建名为OLLAMA_ORIGINS的环境变量,值为*
  • 确保OLLAMA_HOST环境变量的值仍为0.0.0.0
  • 重启Ollama服务。

4. 测试外网访问

        完成上述配置后,可以通过Cpolar生成的公网地址访问Ollama服务。在浏览器中输入公网地址和端口号(如http://<cpolar生成的二级子域名>:11434),如果服务成功启动,页面应显示Ollama API的相关信息。

### 部署 DeepSeek-R1-7B 模型实现远程访问 #### 准备工作 在 Ubuntu 22.04 上部署 DeepSeek-R1-7B 模型前,需确保系统已更新至最新状态,安装必要的依赖项。可以通过以下命令完成环境准备: ```bash sudo apt update && sudo apt upgrade -y ``` #### 安装 Git LFS 和克隆模型仓库 由于 DeepSeek-R1-7B 是大型模型文件,推荐使用 Git Large File Storage (LFS) 来管理其下载过程[^3]。 执行以下命令来安装 Git LFS 克隆模型仓库: ```bash curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash sudo apt-get install git-lfs git lfs install git clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.git cd DeepSeek-R1-Distill-Qwen-7B git lfs pull ``` 上述操作会将模型文件拉取到本地目录中。 #### 使用 Ollama 运行模型 Ollama 提供了一种简单的方式来加载和运行大语言模型。按照以下步骤启动 DeepSeek-R1-7B: 1. **验证 Ollama 是否可用** 如果尚未安装 Ollama,请先完成安装后再继续。之后可以使用 `ollama` 命令运行模型: ```bash ollama run deepseek-r1:7b ``` 此命令会在后台启动模型实例[^1]。 #### 启动 API 服务 为了通过 API 调用模型,需要编写一个简单的 Python 脚本来提供 HTTP 接口。假设脚本名为 `api_test.py`,以下是其实现方式: ```python from flask import Flask, request, jsonify import subprocess app = Flask(__name__) @app.route('/predict', methods=['POST']) def predict(): data = request.json prompt = data.get('prompt') if not prompt: return jsonify({"error": "No prompt provided"}), 400 try: result = subprocess.run( ['ollama', 'run', 'deepseek-r1:7b', '--interactive=false'], input=prompt, text=True, capture_output=True ) output = result.stdout.strip() return jsonify({"response": output}), 200 except Exception as e: return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=8080) ``` 保存该脚本后,可通过以下命令启动 API 服务: ```bash python api_test.py ``` 此时,API 将监听端口 8080,允许外部客户端发送 POST 请求以获取预测结果[^2]。 #### 测试 API 功能 测试 API 的功能可借助 `curl` 或 Postman 工具。例如,使用以下命令向服务器提交请求: ```bash curl -X POST http://localhost:8080/predict \ -H "Content-Type: application/json" \ -d '{"prompt":"What is the capital of France?"}' ``` 返回的结果应包含模型生成的回答。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值