数学-小学、初中、高中、大学宏观介绍

一、背景

下面是从知识点的视角来介绍了小学、初中、高中、大学的数学内容;最开始是以课本章节来的,因为里面会有一些重复的东西,我就想把重复的去掉,所以就以知识点的脉络来了。

后面会根据知识点,对于每个知识点梳理一篇对它的思考,也可以说是它的发展史吧;通过这种形式来构建科学思维(可定义、可测量、可重复)、系统观、全局观。

二、过程

1.小学

当然,以下是用通俗易懂的话对数学1-6年级的核心知识点进行的梳理:

一年级

基础数字和加减法

  • 学习1到20的数字,知道它们怎么读写,还能比较大小。
  • 学会简单的加减法,比如5加3等于几,8减2等于几。
  • 认识了0,知道0就是没有的意思,还能用在加减法里。

形状和分类

  • 认识了一些基本的形状,比如圆形、正方形、三角形等。
  • 学会了把相似的东西放在一起,比如把所有的苹果挑出来。

时间和货币

  • 能看懂简单的钟表,知道几点钟是几点。
  • 认识了钱,比如一元钱、五角钱,还能进行简单的买卖计算。

二年级

更复杂的加减法

  • 学习了更大的数字,比如100以内的加减法。
  • 学会了用乘法口诀来做乘法,比如三七二十一。

图形和位置

  • 更深入地学习了各种形状,还能把形状拼在一起组成新的东西。
  • 知道了上下左右这些方向,还能说出东西放在哪里。

除法初步

  • 开始学习除法,比如知道20个苹果平均分给5个小朋友,每人能得到几个。

三年级

更大的数字和加减法

  • 学习了更大的数字,比如几千几百几十,还能进行这些数字的加减法。
  • 学会了估算,比如知道300加400大概是多少。

重量和长度

  • 认识了更精确的长度单位,比如毫米、分米,还有更远的单位千米。
  • 知道了重量单位,比如克和千克,能比较哪个更重。

时间的新知识

  • 学习了怎样看更复杂的钟表,比如几点几分。

四年级

大数的运算

  • 学习了怎样读写非常大的数字,比如几万几百万。
  • 掌握了这些大数字的加减法、乘法和除法。

角度和图形

  • 知道了什么是角度,还能用量角器来量角。
  • 学习了平行线和垂直线,还有更复杂的图形知识。

简单的统计

  • 学会了怎样收集数据,还能把数据整理成图表来看。

五年级

小数的运算

  • 认识了小数,比如0.5就是一半的意思。
  • 学会了小数的加减法、乘法和除法。

分数的初步

  • 认识了分数,比如三分之一就是把一个东西分成三份,取其中的一份。
  • 学会了分数的加减法。

图形的变换

  • 知道了怎样把图形变大变小,还能把图形旋转或者平移。

六年级

分数的深入

  • 学习了更复杂的分数运算,比如乘法、除法和分数的四则混合运算。
  • 知道了分数和百分数的关系,还能进行百分数的计算。

比例和比例尺

  • 学习了比例的概念,比如两个数的比例是多少。
  • 知道了比例尺,比如地图上的比例尺表示的是真实距离和地图上的距离的比例。

负数和方程

  • 认识了负数,比如-5就是比0还要小的数。
  • 学习了简单的方程,比如解出x的值使得方程成立。

以上就是数学1-6年级的一些核心知识点,希望对你有所帮助!

2.初中

初中数学的知识点可以用更通俗的方式总结如下:

一、数与代数

  • 有理数和无理数:有理数是可以表示为两个整数之比的数,如整数、分数;无理数则不能表示为两个整数之比,如圆周率π、根号2等。
  • 实数运算:包括加、减、乘、除、乘方等运算,需要注意运算的优先级和括号的使用。
  • 代数式:用字母、数字和运算符组成的式子,如3x+5、a2-b2等。需要掌握代数式的运算规则,如合并同类项、分配律等。
  • 方程:含有未知数的等式,如一元一次方程、一元二次方程等。需要掌握方程的解法,如移项、合并同类项、开方等。
  • 不等式:表示两个数或代数式之间大小关系的式子,如x>5、a+b≤c等。需要掌握不等式的性质和解法。
  • 函数:表示两个变量之间关系的式子,如一次函数、二次函数等。需要掌握函数的图像、性质和应用。

二、几何

  • 基本图形:包括点、线、角、三角形、四边形等。需要掌握这些图形的基本性质和计算方法,如角的度量、三角形的内角和等。
  • 面积和体积:需要掌握各种图形的面积和体积的计算方法,如长方形的面积=长×宽,圆柱的体积=底面积×高等。
  • 相似和全等:相似图形是指形状相同但大小不同的图形,全等图形则是指形状和大小都相同的图形。需要掌握相似和全等的性质和判定方法。
  • 勾股定理:在直角三角形中,直角边的平方和等于斜边的平方。这个定理在几何中非常重要,可以解决很多与直角三角形相关的问题。

三、统计与概率

  • 数据收集与处理:需要掌握数据的收集、整理和分析方法,如频数分布表、条形图、折线图等。
  • 平均数、中位数和众数:这些是描述数据集中趋势的统计量,需要掌握它们的计算方法和应用。
  • 概率:表示某事件发生的可能性大小,需要掌握概率的计算方法和应用。

四、解题技巧与应试策略

  • 熟练掌握基本运算规则:这是解题的基础,需要反复练习和巩固。
  • 观察题目特征:根据题目的特点选择合适的解题方法,可以更快地找到解题的思路。
  • 善于利用已知条件:挖掘题目中的隐含条件,可以帮助我们更好地理解和解决问题。
  • 合理分配时间:在考试时,需要根据题目的难易程度和自身掌握情况合理分配时间,避免在难题上浪费太多时间而影响其他题目的解答。

总的来说,初中数学是一个基础而重要的学科,需要我们在学习中不断积累知识和技巧,才能更好地应对各种问题和挑战。

3.高中

高中数学的知识点深入且广泛,以下用通俗的话进行总结:

一、数与代数

高中数学在数与代数方面进一步深化,涉及更复杂的运算和概念。

  • 函数:函数描述了两个变量之间的关系,比如一次函数、二次函数等。它们有各自的图像和性质,比如开口方向、顶点坐标等。通过函数,我们可以解决很多实际问题,比如求最大值、最小值等。
  • 数列:数列是按照一定规律排列的一列数,比如等差数列、等比数列。数列的求和、通项公式等都是重要的知识点。
  • 不等式:不等式表示两个数或代数式之间的大小关系。我们需要掌握不等式的性质和解法,比如一元二次不等式的解法等。

二、几何

几何部分在高中数学中同样占据重要地位,它要求我们具备更强的空间想象能力和计算能力。

  • 平面几何:主要学习直线、圆等平面图形的性质和计算方法,比如直线的斜率、圆的方程等。
  • 立体几何:涉及柱体、锥体、球体等空间几何体的表面积和体积的计算,以及直线与平面、平面与平面的位置关系等。

三、三角函数与解析几何

  • 三角函数:描述了角度与边长之间的关系,比如正弦、余弦、正切等。三角函数的图像和性质,如周期性、奇偶性等,也是重要的知识点。
  • 解析几何:通过坐标系来描述和计算几何问题。我们需要掌握各种曲线的方程和性质,比如抛物线、椭圆等。

四、概率与统计

概率与统计是高中数学中的另一个重要部分,它帮助我们理解和分析数据。

  • 概率:表示某事件发生的可能性大小。我们需要掌握概率的计算方法和应用,比如互斥事件、独立事件的概率等。
  • 统计:涉及数据的收集、整理和分析。我们需要掌握各种统计方法,比如频率分布表、直方图等,以及如何进行抽样调查、回归分析等。

五、微积分初步

微积分是高中数学中的难点和重点,它涉及极限、导数、积分等概念。

  • 极限:描述了函数在某一点或无穷远处的行为。极限的计算方法和应用是微积分的基础。
  • 导数:描述了函数在某一点的变化率。导数的计算方法和应用非常广泛,比如可以用来判断函数的单调性、求极值等。
  • 积分:是导数的逆运算。积分的计算方法和应用同样广泛,比如可以用来计算平面图形的面积、体积等。

六、数学方法与思想

除了上述具体的数学知识点外,高中数学还强调数学方法和思想的培养。

  • 数学建模:将实际问题转化为数学模型的过程。通过数学建模,我们可以更好地理解和解决实际问题。
  • 逻辑推理:根据已知条件进行推理和判断的过程。逻辑推理能力的培养有助于提高我们的数学素养和解题能力。

总的来说,高中数学是一个复杂而有趣的学科。通过不断学习和实践,我们可以掌握更多的数学知识和技能,为未来的学习和生活打下坚实的基础。

4.大学

大学数学的知识点众多且深入,以下用通俗的话对主要知识点进行梳理:

一、微积分

微积分是大学数学的基础,它研究的是函数的变化率和累积效果。

  • 极限:可以理解为函数在某一点或无穷远处的“趋近值”。通过极限,我们可以更好地理解函数的性质和行为。
  • 导数:描述的是函数在某一点的变化率。导数在几何上表示切线斜率,在物理上表示速度、加速度等。通过求导,我们可以找到函数的极值、判断函数的单调性等。
  • 微分:是导数的应用,它可以帮助我们计算函数在某一点附近的微小变化。
  • 积分:是导数的逆运算,它描述的是函数在某个区间上的累积效果。积分在几何上表示面积、体积等,在物理上表示功、能量等。通过积分,我们可以计算平面图形的面积、立体的体积等。

二、线性代数

线性代数研究的是向量、矩阵和线性方程组等概念。

  • 向量:是有大小和方向的量。通过向量,我们可以描述物体的位置、速度等。向量的运算包括加法、减法、数乘和点积等。
  • 矩阵:是一个由数排成的矩形阵列。矩阵的运算包括加法、减法、数乘、乘法和转置等。矩阵在解决实际问题中非常有用,比如可以用来表示线性方程组、进行图像处理等。
  • 线性方程组:是由一组线性方程组成的方程组。通过求解线性方程组,我们可以找到满足所有方程的解。线性方程组的解法包括代入法、消元法和矩阵法等。

三、概率论与数理统计

概率论研究的是随机现象的规律,数理统计则是利用概率论的方法对数据进行分析和推断。

  • 概率:表示某事件发生的可能性大小。概率的计算方法包括加法公式、乘法公式、全概率公式和贝叶斯公式等。
  • 随机变量:是描述随机现象的量。随机变量可以是离散的(如掷骰子的点数)或连续的(如人的身高)。随机变量的分布描述了其取值的概率规律。
  • 数理统计:包括描述性统计和推断性统计两部分。描述性统计通过计算样本的均值、方差等统计量来描述数据的特征;推断性统计则通过抽样分布、置信区间和假设检验等方法对总体进行推断。

四、其他重要知识点

  • 级数:是无穷多个数的序列的和。级数的收敛性判别法包括比值判别法、根值判别法等。
  • 微分方程:描述的是函数与其导数之间的关系。微分方程的解法包括分离变量法、一阶线性微分方程解法等。
  • 复变函数:研究的是复数域上的函数。复变函数的导数和积分等概念与实数域上的函数有所不同。
  • 数值分析:是研究数值计算方法的学科。它包括插值、数值积分与微分、线性方程组的数值解法等内容。

总的来说,大学数学是一个庞大而复杂的体系,涉及众多知识点和概念。通过不断学习和实践,我们可以逐步掌握这些知识点和概念,并运用它们来解决实际问题。

三、总结

这是数学大的脉络,可以让我有一个系统性的认知过程;后面再结合课本执行的时候,将会有一个明确的基准。

当然这也是未来理解市场,理解数,理解生活,理解人生的基础。

我曾经也说过,数学是理论的顶级抽象;而金融是应用的顶级抽象;未来再来迭代这句话的理解和内涵。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值