【基础】——一文了解K线基础

一、背景

小编认为K线图是基础中的基础,所以通过本文介绍自己对于K线图的学习和理解。

二、客观概念

1、历史

K线,又被称为蜡烛图、阴阳线等,起源于18世纪日本德川幕府时期的米市。当时,日本正处于稳定、和平的时期,农业生产日益发展,商业活动逐渐发达。为了更好地了解米价的走势情况、分析预测其后期走势,人们开始记录米价的波动情况。K线就是用来记录这些价格波动情况的图线。

K线的图形状颇似一根根蜡烛,且用阴阳两种颜色来表示上涨或下跌,具有直观、立体感强、携带信息量大的特点,充分展示了东方人所擅长的形象思维特点。1990年,美国人史蒂夫·尼森以《阴线阳线》一书向西方金融界引进“日本K线图”,从而引起了西方金融界的轰动。由于K线图形似蜡烛,因而在英文中称之为“candle’”(蜡烛),这一单词的前面发“k”的音,因而将其称为K线图。

由于K线可以直观、清晰、形象地体现出价格在每一天的波动情况,它后来被广泛地应用于证券市场中,成为一种重要的记录和研究价格走势的工具。

2、基本元素

开盘价、收盘价、最高价、最低价

3、规则

  • 3.1.K线中间竖线,最上为最高价位置
  • 3.2.K线中间竖线,最下为最低价位置
  • 3.3.绿色实体柱子:最上为开盘价,最下为收盘价
  • 3.4.红色实体柱子:最上为收盘价,最下为开盘价

4、示例:单根红、绿边界图

结合以上规则,判断下图中的基本元素在什么位置?文末有标准答案。

在这里插入图片描述

三、主观逻辑

  • 1.以下主观逻辑是在大多数情况下的判断,不包含主力控盘故意制造假K线的情况
  • 2.如果趋势不破的情况下,出现不一致的K线逻辑,那大概率是主力操作假象(趋势:季度、月、周、日来判断K线最低点不创新低则证明趋势还在)

1、基本元素逻辑解析

  • 1.1.最高价代表多方(看好未来,愿意高价买入的一方)。
  • 1.2.最低价代表空方(不看好未来,愿意低价卖出的一方)。
  • 1.3.最高价-最低价的差值,代表空方和多方的分歧,差值越大,分歧越大。
  • 1.4.开盘价和收盘价都代表集合竞价过程中多空方的意愿
  • 1.5.开盘价>收盘价,柱子绿色,代表空方胜出
  • 1.6.开盘价<收盘价,柱子红色,代表多方胜出

2、多根K线组合逻辑,在基本元素的基础上判断

2.1.双K线组合;在第一根K线判断多空胜出的基础上,通过第二根K线进一步确认判断

  • 2.1.1.多头强力边界:第一根红色,第二根一字向上跳空一字板(开盘价=收盘价=最高价=最低价); 第一根绿色,第二根红色且反包(第二根最高价>第一根最高价、第二根最低价<第一根最低价)
  • 2.1.2.空头强力边界:第一根绿色,第二根一字向下跳空一字板(开盘价=收盘价=最高价=最低价); 第一根红色,第二根绿色且反包(第二根最高价>第一根最高价、第二根最低价<第一根最低价)

2.2.三K线组合;在第双K线判断多空胜出的基础上,通过第三根K线进一步确认判断

方式和第二根与第一根判断方式一致。

3、趋势下的K线逻辑,在多K线组合基础上判断

3.1.上升趋势中(K线的最低价,连成一个向上的线),收绿则证明正常的回调,只要不破趋势线,后市蓄力还会加速上涨
3.2.下降趋势中(K线的最高价,连成一个向下的线),收红则证明阶段反弹,只要不破趋势线,后市卖出还会加速下跌

四、总结

基础知识很少,但是通过组合变化的情况非常之多;所以在研判时,不能仅仅依靠单一指标进行判断,要结合多个指标综合判断才能不断提高准确率;后面会陆续介绍其它基数指标。
在这里插入图片描述

### AI 矩阵乘法在FPGA上的实现 #### 设计目标与挑战 为了实现在现场可编程门阵列 (FPGA) 上高效执行AI矩阵乘法运算,设计者需考虑多个因素来确保性能、功耗以及资源利用率之间的平衡。具体来说,《Fast, Scalable, Energy-Efficient Non-element-wise Matrix Multiplication on FPGA》一文中提到的方法旨在提供快速、可扩展且节能高效的非逐元矩阵乘法解决方案[^1]。 #### 架构选择 一种常见的架构是采用流水线结构配合并行处理单元的方式来进行矩阵操作。这种设计方案允许同时启动多个计算任务,在提高吞吐量的同时降低了延迟时间。此外,还可以利用分布式存储器模型来缓存中间结果,从而进一步提升效率。 #### 数据流管理 针对大规模矩阵运算的需求,有效的数据传输机制至关重要。通过优化内存访问模式和引入局部性原理,能够有效减少外部RAM带宽压力;而内部BRAM则用于暂存频繁使用的子集数据,以此加快读取速度并降低能耗开销。 #### 近似计算技术的应用 考虑到某些应用场景下对精度的要求并非绝对严格,因此可以借鉴近似矩阵乘法的思想——即基于数据统计相关性的简化策略,将复杂度较高的高维矩阵转换成较低维度的形式再做乘法运算,这不仅有助于减轻硬件负担还能带来额外的速度优势[^2]。 #### OpenCL框架支持 借助于OpenCL这样的高级编程接口标准,开发者可以在异构平台上轻松部署复杂的算法逻辑。特别是当涉及到多核CPU/GPU+FPGA协同工作时,该工具提供了极大的灵活性和支持力度。例如,在进行矩阵乘法时,每个GPU线程负责计算特定部分的点积,并记录相应的加速效果变化趋势[^3]。 ```cpp // 示例代码片段展示了一个简单的OpenCL内核函数定义方式 __kernel void matrixMul(__global float* A,__global float* B,__global float* C,int width){ int row=get_global_id(0); int col=get_global_id(1); float sum=0; for(int k=0;k<width;++k){ sum+=A[row*width+k]*B[k*width+col]; } C[row*width+col]=sum; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值