一.矩阵范数的定义
假设矩阵
,定义一个实值函数
,当实值函数满足非负性:
当时,
;
当时,
;
齐次性:
三角不等式:
则可以称实值函数为
的广义矩阵范数。
对于上的同类广义矩阵范数
,若满足相容性:
则可以称为矩阵
的矩阵范数。
二.常用矩阵范数
1.矩阵
-范数(行和范数)
矩阵的行和范数(也称为最大绝对行和范数或称为∞-范数)是一种特定的矩阵范数,它通过取矩阵所有行的元素绝对值之和的最大值来定义。对于一个给定的 m×n矩阵 A,其行和范数定义为:
2.矩阵1-范数(列和范数)
矩阵的列和范数是矩阵范数的一种,它定义为矩阵每一列元素绝对值之和的最大值。对于一个 m×n 的矩阵 A,其列和范数定义为:
3.矩阵2-范数(谱范数)
矩阵的2-范数,也称为谱范数。对于一个给定的矩阵 A,其2-范数定义为矩阵的最大奇异值。奇异值是矩阵 的特征值的平方根,其中
是 A 的共轭转置矩阵。其谱范数的的定义为:
4.矩阵F-范数(Frobenius范数)
矩阵的F-范数(Frobenius范数)是一种特殊的矩阵范数,它在数学上的地位类似于向量范数中的欧几里得范数(L2范数)。F范数的定义是矩阵中所有元素的平方和的平方根。具体来说,对于一个 m×n的矩阵 A,其F范数定义为:
参考资料:
张凯院等编著. 矩阵论[M]. 西安:西北工业大学出版社,2017.