矩阵范数定义及常用范数

一.矩阵范数的定义

        假设矩阵A\in C^{^{m\times n}},定义一个实值函数\left \| A \right \|,当实值函数满足非负性

A\neq 0时,\left \| A \right \|> 0

A= 0时,\left \| A \right \|= 0

齐次性

                                                 \left \| cA \right \|=\left | c \right |\cdot \left \| A \right \|                                      \left ( c\in C \right )

三角不等式

                                ​​​​​​​        ​​​​​​​        ​​​​​ \left \| A +B\right \|\leqslant \left \| A \right \|+\left \| B \right \|                          ​​​​​ \left ( B\in C^{m\times n} \right )

则可以称实值函数\left \| A \right \|A广义矩阵范数

        对于C^{m \times n},C^{n \times l},C^{m \times l}上的同类广义矩阵范数\left \| \cdot \right \|,若满足相容性

                                                    ​​​​​​​\left \| AB \right \|\l\leqslant \left \| A \right \|\cdot \left \| B \right \|        ​​​​​​​        ​​​​​​​              \left ( B\in C^{^{n\times l}} \right )

则可以称\left \| A \right \|为矩阵A矩阵范数

二.常用矩阵范数

1.矩阵\infty-范数(行和范数)

        矩阵的行和范数(也称为最大绝对行和范数或称为∞-范数)是一种特定的矩阵范数,它通过取矩阵所有行的元素绝对值之和的最大值来定义。对于一个给定的 m×n矩阵 A,其行和范数定义为:

2.矩阵1-范数(列和范数)

        矩阵的列和范数是矩阵范数的一种,它定义为矩阵每一列元素绝对值之和的最大值。对于一个 m×n 的矩阵 A,其列和范数定义为:

3.矩阵2-范数(谱范数)

        矩阵的2-范数,也称为谱范数。对于一个给定的矩阵 A,其2-范数定义为矩阵的最大奇异值。奇异值是矩阵 A^{H}A的特征值的平方根,其中A^{H}A 的共轭转置矩阵。其谱范数的的定义为:

4.矩阵F-范数(Frobenius范数)

         矩阵的F-范数(Frobenius范数)是一种特殊的矩阵范数,它在数学上的地位类似于向量范数中的欧几里得范数(L2范数)。F范数的定义是矩阵中所有元素的平方和的平方根。具体来说,对于一个 m×n的矩阵 A,其F范数定义为:

参考资料:

        张凯院等编著. 矩阵论[M]. 西安:西北工业大学出版社,2017. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值