1.最小栈(lc155)
题目描述:
设计一个支持 push ,pop ,top 操作,并能在常数时间内检索到最小元素的栈。
实现 MinStack 类:
MinStack() 初始化堆栈对象。
void push(int val) 将元素val推入堆栈。
void pop() 删除堆栈顶部的元素。
int top() 获取堆栈顶部的元素。
int getMin() 获取堆栈中的最小元素。
示例 1:
输入:
["MinStack","push","push","push","getMin","pop","top","getMin"]
[[],[-2],[0],[-3],[],[],[],[]]
输出:
[null,null,null,null,-3,null,0,-2]
解释:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin(); --> 返回 -3.
minStack.pop();
minStack.top(); --> 返回 0.
minStack.getMin(); --> 返回 -2.
提示:
-231 <= val <= 231 - 1
pop、top 和 getMin 操作总是在 非空栈 上调用
push, pop, top, and getMin最多被调用 3 * 104 次
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/min-stack
解题思路:
1. 利用两个栈,一个为正常栈(保存所有的进出栈数据),一个为最小栈(只有当数据为最小时,才会入栈)
2. 核心在于:入栈时,若数据最小,需要两个栈都要入栈,出栈时,如果出的数据为最小,需要更新最小栈
代码实现:
class MinStack {
private Stack<Integer> stack;
private Stack<Integer> minStack;
public MinStack() {
stack = new Stack<>();
minStack = new Stack<>();
}
public void push(int val) {
stack.push(val);
if(minStack.empty() || val<=minStack.peek()){
minStack.push(val);
}
}
public void pop() {
int s = stack.pop();
if(s == minStack.peek()){
minStack.pop();
}
}
public int top() {
return stack.peek();
}
public int getMin() {
return minStack.peek();
}
}
/**
* Your MinStack object will be instantiated and called as such:
* MinStack obj = new MinStack();
* obj.push(val);
* obj.pop();
* int param_3 = obj.top();
* int param_4 = obj.getMin();
*/
提交结果:

2. 栈的压入、弹出序列(牛客JZ31)
题目描述:
输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。
0<=pushV.length == popV.length <=1000
-1000<=pushV[i]<=1000
pushV 的所有数字均不相同
示例1
输入:[1,2,3,4,5],[4,5,3,2,1]
返回值:true
说明:可以通过push(1)=>push(2)=>push(3)=>push(4)=>pop()=>push(5)=>pop()=>pop()=>pop()=>pop()这样的顺序得到[4,5,3,2,1]这个序列,返回true
示例2
输入:[1,2,3,4,5],[4,3,5,1,2]
返回值:false
说明:由于是[1,2,3,4,5]的压入顺序,[4,3,5,1,2]的弹出顺序,要求4,3,5必须在1,2前压入,且1,2不能弹出,但是这样压入的顺序,1又不能在2之前弹出,所以无法形成的,返回false
链接:栈的压入、弹出序列_牛客题霸_牛客网 (nowcoder.com)
来源:牛客网
解题思路:
此题是对栈特性非常好的检测,直接使用栈来模拟入栈和出现的过程即可,因此该题的核心工作就是要弄清楚什么时候入栈以及出栈入栈:当栈为空,或者栈顶元素和待出栈元素不相等时
注意:入栈时要保证有元素,如果没有元素则一定不相等.出栈:当栈顶元素待出栈元素相同时出栈
循环进行上述过程即可,直到所有的元素全部出栈
举例:
入栈1,2,3,4,5
出栈4,5,3,2,1
首先1入辅助栈,此时栈顶1≠4,继续入栈2
此时栈顶2≠4,继续入栈3
此时栈顶3≠4,继续入栈4
此时栈顶4=4,出栈4,出栈序列向后一位,此时为5,,辅助栈里面是1,2,3
此时栈顶3≠5,继续入栈5
此时栈顶5=5,出栈5,出栈序列向后一位,此时为3,,辅助栈里面是1,2,3
此时栈顶3=3, 出栈3,出栈序列向后一位,此时为2,,辅助栈里面是1,2
此时栈顶2=2, 出栈2,出栈序列向后一位,此时为1,,辅助栈里面是1
此时栈顶1=1, 出栈1,出栈序列向后一位, 此时出栈序列遍历结束, 辅助栈为空栈
代码实现:
import java.util.*;
public class Solution {
public boolean IsPopOrder(int [] pushA, int [] popA) {
Stack<Integer> stack = new Stack<>();
int j = 0;
for(int i = 0; i < pushA.length; i++) {
stack.push(pushA[i]);
while(j < popA.length && !stack.empty() && stack.peek() == popA[j]) {
stack.pop();
j++;
}
}
return stack.empty();
}
}
提交结果:

3. 逆波兰表达式(lc150)
题目描述:
给你一个字符串数组 tokens ,表示一个根据 逆波兰表示法 表示的算术表达式。
请你计算该表达式。返回一个表示表达式值的整数。
注意:
有效的算符为 '+'、'-'、'*' 和 '/' 。
每个操作数(运算对象)都可以是一个整数或者另一个表达式。
两个整数之间的除法总是 向零截断 。
表达式中不含除零运算。
输入是一个根据逆波兰表示法表示的算术表达式。
答案及所有中间计算结果可以用 32 位 整数表示。
示例 1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例 2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
示例 3:
输入:tokens = ["10","6","9","3","+","-11","*","/","*","17","+","5","+"]
输出:22
解释:该算式转化为常见的中缀算术表达式为:
((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22
提示:
1 <= tokens.length <= 104
tokens[i] 是一个算符("+"、"-"、"*" 或 "/"),或是在范围 [-200, 200] 内的一个整数
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/evaluate-reverse-polish-notation
解题思路:
对tokens数组进行遍历,依次获取到每个元素,如果:
1. 该元素是数字(注意:不是运算符肯定是数字),将该数字入栈
2. 该元素是运算符,从栈顶获取该运算符对应的右左操作数,进行相应的操作,最后将结果入栈
循环结束后,栈顶的元素就是最终表达式的结果.

代码实现:
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
//遍历数组
for (String x:
tokens) {
if(! isOperation(x)){ //是数子的情况
//将字符转为数字
stack.push(Integer.parseInt(x));
} else { //是操作符号的情况
int right = stack.pop();
int left = stack.pop();
switch (x) {
case "+":
stack.push(left + right);
break;
case "-":
stack.push(left - right);
break;
case "*":
stack.push(left * right);
break;
case "/":
stack.push(left / right);
break;
}
}
}
return stack.pop();
}
private boolean isOperation(String s){
//字符串相等用equals
return s.equals("+") || s.equals("-") || s.equals("*") || s.equals("/");
}
}
提交结果:

4. 有效的括号(lc20)
题目描述:
给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
每个右括号都有一个对应的相同类型的左括号。
示例 1:
输入:s = "()"
输出:true
示例 2:
输入:s = "()[]{}"
输出:true
示例 3:
输入:s = "(]"
输出:false
提示:
1 <= s.length <= 104
s 仅由括号 '()[]{}' 组成
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/valid-parentheses
解题思路:
循环遍历String中的字符,逐个取到每个括号,如果该括号是:
1. 左括号,直接入栈
2. 右括号,与栈顶的左括号进行匹配,如果不匹配直接返回false否则继续循环
循环结束后,如果栈空则匹配,否则左括号比右括号多肯定不匹配

代码实现:
class Solution {
public boolean isValid(String s) {
Stack<Character> stack = new Stack<>();
for(int i = 0; i < s.length() ; i++) {
char ch1 = s.charAt(i);
if(ch1 == '(' || ch1 == '{' || ch1 == '['){ // 是左的情况入栈
stack.push(ch1);
} else { //不是左
if(stack.empty()){ //空的话
return false;
} else { //不空的话
char ch2 = stack.peek(); //看栈顶元素接下来匹配 成功的话弹出
if(ch2 == '(' && ch1 == ')' || ch2 == '{' && ch1 == '}' || ch2 == '[' && ch1 == ']'){
stack.pop();
}else{ //不成功直接false
return false;
}
}
}
}
return stack.empty(); //一直是左的情况 遍历到最后 不为空 即false
}
}
提交结果:
