离散数学-集合论-关系的闭包、等价关系与划分和偏序关系(9)

关系的闭包、等价关系与划分和偏序关系

1 关系的闭包

定义:设R是非空集合A上的关系,R的自反(对称或传递)闭包是A上的关系R’,使得R‘满足以下条件:
(1)R’是自反的(对称的或传递的)
(2) R ⊆ R ’ R\sube R’ RR
(3)对A上任何包含R的自反(对称或传递)关系R’',有 R ′ ⊆ R ′ ′ R'\sube R'' RR′′,R的自反闭包记作 r ( R ) r(R) r(R),对称闭包记作 s ( R ) s(R) s(R),传递闭包记作 t ( R ) t(R) t(R)
一般将R的自反闭包记作 r ( R ) r(R) r(R),对称闭包记作 s ( R ) s(R) s(R)
,传递闭包记作 t ( R ) t(R) t(R)
定理:设R为A上的关系,则有:
(1) r ( R ) = R ∪ R 0 r(R)=R∪R^0 r(R)=RR0 ( R 0 = I A ) (R^0=I_A) R0=IA
(2) s ( R ) = R ∪ R − 1 s(R)=R∪R^{-1} s(R)=RR1
(3) t ( R ) = R ∪ R 2 ∪ R 3 ∪ ⋅ ⋅ ⋅ ⋅ t(R)=R∪R^2∪R^3∪···· t(R)=RR2R3⋅⋅⋅⋅
例如:给定A={1,2,3,4}和A上的关系R={<1,3>,<1,4>,<2,3>,<2,4>,< 3,4>},求R的自反闭包、对称闭包和传递闭包。
解:
r ( R ) r(R) r(R)=R∪ I A I_A IA
={<1,3>,<1,4>,<2,3>,<2,4>,< 3,4>}∪{<1,1>,<2,2>,< 3,3>.<4,4>}
={<1,1>,<2,2>,< 3,3>.<4,4>,<1,3>,<1,4>,<2,3>,<2,4>,< 3,4>}
s ( R ) s(R) s(R)=R∪ R − 1 R^{-1} R1
={<1,3>,<1,4>,<2,3>,<2,4>,< 3,4>}∪{< 3,1>,<4,1>,< 3,2>,<4,2>,<4,3>}
={< 3,1>,<4,1>,< 3,2>,<4,2>,<4,3>,<1,3>,<1,4>,<2,3>,<2,4>,< 3,4>}
t ( R ) t(R) t(R)= R ∪ R 2 R∪R^2 RR2
={<1,3>,<1,4>,<2,3>,<2,4>,< 3,4>}∪{<1,4>,<2,4>}
={<1,3>,<1,4>,<2,3>,<2,4>,< 3,4>,<2,4>}

在这里插入图片描述

2 等价关系和划分

定义1:等价关系
设R为非空集合A上的关系,如果R是自反的、对称的和传递的,则称R为A上的等价关系,设R是一个等价关系,若<x,y>∈R,称x等价于y,记作x~y。
在这里插入图片描述

定义2:等价类
设R为非空集合A上的等价关系, ∀ x \forall x x∈A,令
[ x ] R = ( y ∣ y ∈ A ∧ x R y [x]_R=(y|y∈A\land xRy [x]R=yyAxRy
称[x]_R为关于R的等价类,简称为x的等价类,简记[x]或 x ˉ \text{\={x}} xˉ
在这里插入图片描述
定义3:商集
设R为非空集合A上的等价关系,以R的所有等价类作为元素的集合称为A关于R的商集,记作A/R,即:
A / R = [ x ] R ∣ x ∈ A A/R={[x]_R|x∈A} A/R=[x]RxA
在这里插入图片描述
定义4:集合的划分
在这里插入图片描述
在这里插入图片描述

3 偏序关系

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 4
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二元关系 在集合 $A$ 上定义的二元关系是一个有序对的集合 $R \subseteq A \times A$,通常用 $(a, b) \in R$ 表示 $a$ 和 $b$ 之间存在关系 $R$。 $R$ 的域是 $A$ 的子集 $\operatorname{dom}(R) = \{a \in A | \exists b \in A, (a, b) \in R\}$,$R$ 的值域是 $A$ 的子集 $\operatorname{ran}(R) = \{b \in A | \exists a \in A, (a, b) \in R\}$。若 $\operatorname{dom}(R) = A$,则称 $R$ 是 $A$ 上的全二元关系关系的运算 $R_1, R_2 \subseteq A \times A$,则以下是几种基本的关系运算: 1. 并集:$R_1 \cup R_2 = \{(a, b) \in A \times A | (a, b) \in R_1 \text{ 或 } (a, b) \in R_2\}$。 2. 交集:$R_1 \cap R_2 = \{(a, b) \in A \times A | (a, b) \in R_1 \text{ 且 } (a, b) \in R_2\}$。 3. 差集:$R_1 - R_2 = \{(a, b) \in A \times A | (a, b) \in R_1 \text{ 且 } (a, b) \notin R_2\}$。 4. 补集:$\overline{R_1} = A \times A - R_1$。 5. 复合:$R_1 \circ R_2 = \{(a, c) \in A \times A | \exists b \in A, (a, b) \in R_1 \text{ 且 } (b, c) \in R_2\}$。 6. 反转:$R_1^{-1} = \{(b, a) \in A \times A | (a, b) \in R_1\}$。 关系闭包 $R$ 是 $A$ 上的二元关系,$R^*$ 是 $R$ 的传递闭包,即 $R^* = \bigcap \{S \subseteq A \times A | R \subseteq S \text{ 且 } S \text{ 是传递的}\}$。其中 $\bigcap$ 表示所有集合的交集。 具体来说,若 $(a, b) \in R^*$,则存在 $n \geq 1$ 和 $a_1, a_2, \cdots, a_n \in A$,使得 $(a, a_1) \in R, (a_1, a_2) \in R, \cdots, (a_n, b) \in R$。 另外,还有以下几种常见的关系闭包: 1. 自反闭包:$R^{\text{refl}} = R \cup \{(a, a) | a \in A\}$。 2. 对称闭包:$R^{\text{symm}} = R \cup R^{-1}$。 3. 传递闭包:$R^{\text{trans}} = R^* = \bigcap \{S \subseteq A \times A | R \subseteq S \text{ 且 } S \text{ 是传递的}\}$。 4. 自反对称闭包:$R^{\text{refl-symm}} = R^{\text{refl}} \cap R^{\text{symm}}$。 等价关系划分 $R$ 是 $A$ 上的二元关系,则称 $R$ 是等价关系,如果它满足以下三个条件: 1. 自反性:$(a, a) \in R$。 2. 对称性:$(a, b) \in R \Rightarrow (b, a) \in R$。 3. 传递性:$(a, b) \in R \text{ 且 } (b, c) \in R \Rightarrow (a, c) \in R$。 等价关系把 $A$ 分成若干个不相交的子集(也称为等价类),每个子集中的元素彼此之间满足 $R$ 关系,而不同子集中的元素之间不存在 $R$ 关系 $a \in A$,则 $[a]_R = \{b \in A | (a, b) \in R\}$ 表示 $a$ 所在的等价类。 划分是指把集合 $A$ 分成若干个不相交的子集,每个子集称为一个划分类,且所有划分类的并集为 $A$。 偏序关系 $R$ 是 $A$ 上的二元关系,则称 $R$ 是偏序关系(或部分序关系),如果它满足以下三个条件: 1. 自反性:$(a, a) \in R$。 2. 反对称性:$(a, b) \in R \text{ 且 } (b, a) \in R \Rightarrow a = b$。 3. 传递性:$(a, b) \in R \text{ 且 } (b, c) \in R \Rightarrow (a, c) \in R$。 偏序关系把 $A$ 中的元素分成若干层,每一层中的元素都具有相同的某种属性,但不同层之间的元素之间可能没有任何关系。例如,可以用偏序关系来描述自然数的大小关系 $a, b \in A$,则称 $a$ 在 $b$ 的下面(或 $b$ 在 $a$ 的上面),如果 $(a, b) \in R$。称 $a$ 和 $b$ 是可比较的,如果 $(a, b) \in R$ 或 $(b, a) \in R$,否则称 $a$ 和 $b$ 是不可比较的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值