swin transformer+FPN(内含代码,可用于图像分类)

以下是一个基础版本的 Swin Transformer(Swin-B)加上特征金字塔网络(FPN)实现渐进融合的简化代码。请注意,这是一个简化版本,可能需要根据具体需求进行调整和优化。

import torch
import torch.nn as nn
import torch.nn.functional as F

# Swin Transformer Block
class SwinTransformerBlock(nn.Module):
    def __init__(self, dim, heads, head_dim, mlp_dim, dropout=0.0):
        super(SwinTransformerBlock, self).__init__()
        self.attention = nn.MultiheadAttention(dim, heads, dropout=dropout)
        self.norm1 = nn.LayerNorm(dim)
        self.mlp = nn.Sequential(
            nn.Linear(dim, mlp_dim),
            nn.GELU(),
            nn.Linear(mlp_dim, dim),
            nn.Dropout(dropout)
        )
        self.norm2 = nn.LayerNorm(dim)

    def forward(self, x):
        attention_output, _ = self.attention(x, x, x)
        x = x + attention_output
        x = self.norm1(x)
        mlp_output = self.mlp(x)
        x = x + mlp_output
        x = self.norm2(x)
        return x

# Swin Transformer Backbone
class SwinTransformer(nn.Module):
    def __init__(self, image_size, patch_size, in_channels, num_classes, embed_dim, depths, heads, mlp_dim, dropout=0.0):
        super(SwinTransformer, self).__init__()
        self.patch_embed = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
        self.pos_embed = nn.Parameter(torch.zeros(1, (image_size // patch_size) ** 2 + 1, embed_dim))
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.blocks = nn.ModuleList([
            SwinTransformerBlock(dim=embed_dim, heads=heads, head_dim=embed_dim // heads, mlp_dim=mlp_dim, dropout=dropout)
            for _ in range(depths)
        ])
        self.norm = nn.LayerNorm(embed_dim)
        self.fc = nn.Linear(embed_dim, num_classes)

    def forward(self, x):
        x = self.patch_embed(x)
        B, C, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed
        for block in self.blocks:
            x = block(x)
        x = self.norm(x)
        cls_tokens = x[:, 0]
        output = self.fc(cls_tokens)
        return output

# Feature Pyramid Network Block
class FPNBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(FPNBlock, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
        self.up_sample = nn.Upsample(scale_factor=2, mode='nearest')

    def forward(self, x):
        return self.conv(self.up_sample(x))

# Swin Transformer with Feature Pyramid Network (FPN)
class SwinTransformerWithFPN(nn.Module):
    def __init__(self, image_size, patch_size, in_channels, num_classes, embed_dim, depths, heads, mlp_dim, fpn_channels, dropout=0.0):
        super(SwinTransformerWithFPN, self).__init__()

        # Swin Transformer
        self.swin = SwinTransformer(image_size, patch_size, in_channels, num_classes, embed_dim, depths, heads, mlp_dim, dropout)

        # FPN Blocks
        self.fpn_block1 = FPNBlock(embed_dim, fpn_channels)
        self.fpn_block2 = FPNBlock(embed_dim, fpn_channels)
        self.fpn_block3 = FPNBlock(embed_dim, fpn_channels)

        # Classifier
        self.classifier = nn.Linear(fpn_channels, num_classes)

    def forward(self, x):
        # Swin Transformer
        features = self.swin(x)

        # FPN
        fpn_feature1 = self.fpn_block1(features.blocks[-3])
        fpn_feature2 = self.fpn_block2(features.blocks[-4])
        fpn_feature3 = self.fpn_block3(features.blocks[-5])

        # Combine FPN features
        fused_feature = fpn_feature1 + fpn_feature2 + fpn_feature3

        # Global Average Pooling
        global_pooling = torch.mean(fused_feature, dim=[2, 3])

        # Classifier
        output = self.classifier(global_pooling)

        return output

# 创建 Swin Transformer + FPN 模型
swin_fpn_model = SwinTransformerWithFPN(
    image_size=224,
    patch_size=4,
    in_channels=3,
    num_classes=1000,
    embed_dim=96,
    depths=12,
    heads=4,
    mlp_dim=384,
    fpn_channels=64,
    dropout=0.0
)

# 打印模型结构
print(swin_fpn_model)

这个代码示例定义了一个简化版本的 Swin Transformer 和 FPN 结合的模型。你可以根据需要调整 Swin Transformer 和 FPNBlock 的通道数以适应你的任务。确保你的输入图像尺寸和通道数与模型定义中的一致。

  • 19
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
以下是使用Swin TransformerFPN和PAN进行目标检测的代码示例: 首先,我们需要安装必要的和工具: ```bash pip install torch torchvision opencv-python tqdm ``` 接下来,我们需要下载COCO数据集和预训练的Swin Transformer模型。我们可以使用以下命令来下载它们: ```bash mkdir data cd data # Download COCO dataset wget http://images.cocodataset.org/zips/train2017.zip wget http://images.cocodataset.org/zips/val2017.zip wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip unzip train2017.zip unzip val2017.zip unzip annotations_trainval2017.zip rm train2017.zip val2017.zip annotations_trainval2017.zip # Download pre-trained Swin Transformer model mkdir models cd models wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth ``` 接下来,我们可以编写一个Python脚本来训练我们的模型。以下是一个简单的示例: ```python import torch import torchvision import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision.datasets import CocoDetection from swin_transformer import SwinTransformer from fpn import FPN from pan import PAN # Define hyperparameters batch_size = 16 num_epochs = 10 lr = 1e-4 # Define data transforms transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Load COCO dataset train_dataset = CocoDetection(root='./data', annFile='./data/annotations/instances_train2017.json', transform=transform) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # Define Swin Transformer model swin = SwinTransformer() swin.load_state_dict(torch.load('./data/models/swin_tiny_patch4_window7_224.pth')) # Define FPN and PAN models fpn = FPN(in_channels=[96, 192, 384, 768], out_channels=256) pan = PAN(in_channels=[256, 256, 256, 256], out_channels=256) # Define detection head detection_head = nn.Sequential( nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 4, kernel_size=1), nn.Sigmoid() ) # Define optimizer and loss function optimizer = optim.Adam(list(swin.parameters()) + list(fpn.parameters()) + list(pan.parameters()) + list(detection_head.parameters()), lr=lr) criterion = nn.MSELoss() # Train the model for epoch in range(num_epochs): for images, targets in train_loader: # Forward pass features = swin(images) fpn_features = fpn(features) pan_features = pan(fpn_features) output = detection_head(pan_features[-1]) # Compute loss loss = criterion(output, targets) # Backward pass and update weights optimizer.zero_grad() loss.backward() optimizer.step() # Print statistics print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 在上面的代码中,我们首先加载了预训练的Swin Transformer模型,并使用它提取特征。然后,我们将这些特征输入到FPN和PAN模型中,以生成具有不同分辨率的特征图。最后,我们使用一个简单的检测头来预测边界框。 在训练期间,我们使用均方误差(MSE)作为损失函数,并使用Adam优化器来更新模型的权重。 请注意,上面的代码仅提供了一个简单的示例,实际上,您可能需要进行一些其他的调整和修改,以便使其适用于您的具体任务和数据集。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值