1.哈密顿-凯莱定理
定义:每个 n 阶矩阵都是它的特征多项式的根
特征多项式:f(A) = |…|=…,λ 为特征值
2. 简化运算
又因为哈密顿-凯莱定理可知,f(A) = 0,所以化简后等于 r(A)
3.例题-简化矩阵计算
定义: 当你看到需要计算一个很长的公式的时候,你就可以往哈密顿-凯莱定理+简化计算上思考。
方法:
- 利用求特征值的方法|…|得到形如 f(A) = A… 的方程。
- 然后将长的计算公式假设为 φ(A),然后除以 f(A),得到余项,而 f(A) 本身就等于 0 ,所以 φ(A) = 余项
第二问求A逆
方法: 第二问所求的 A-1,应该是一个包含 A 和 E 的表达式,我们可以利用求秩的表达式求解。——>将单独 E 想办法转到右边,A 进行提出,就能够很快速地求解 A-1 了
第三问:求较长计算式的逆
方法: 较长计算式一般等于余项,相当于求余项的逆,将余项往 |…| 公式里去凑即可**【凑+哈密顿-凯莱定理即可】**
4.最小多项式
概念上: 分为特征多项式(f(A)=|…|=…)、零化多项式、最小多项式;最小多项式相当于在零化多项式的基础至少,加了一个首项系数为1的条件。
特点上: 特征多项式和最小多项式的根完全一样,所以要找到最小多项式,首先得找到特征多项式,然后再加上一个条件即可。
5.例题-求最小多项式
从特征多项式——>最小多项式的关键:将矩阵代入多项式后,验证多项式的值是否为 0,为0,则证明满足最小多项式
如何验证是否为0 ?——> 将矩阵 A 和 E 代入到多项式中,如:(入-2)(入-4) ——>(A-2E)(A-4E)
6.Jordan 标准型
1.入矩阵:矩阵A的所有元素都是入的多项式:
2.行列式因子:
定义: A(入)矩阵为入矩阵,其中所有非零的 K 阶子式:| … |、| … |、| . | (值不为0的子式),其中首项系数为1,最大公因式为0的子式,为A的一个K阶行列式因子
3.初级因子:
就是将不变因子分解为互不相同的两个因子乘积,如:
4.Jordan标准型的定义:
- 约旦块与初级因子相关,而初级因子是由不变因子分解得来的,而不变因子是由行列式因子得来的,最后行列式因子和A(入)相关。
- 注意,约旦标准型的构成与若干个约旦块有关,而约旦块的构造与若干个初级因子有关
5.求解约旦标准型的方法:行列式因子法(利用初级因子)
7.例题:求解Jordan标准型
利用行列式因子求 Jordan 标准型
关键:
- 求行列式因子,分为 K…k-1…1 阶行列式因子,如图所示
- 子式的行列式因子有很多,其中最大公因子为其行列式因子
- 行列式因子相除为不变因子
- 初等因子为为1因子
求得二阶行列式因子 D2
求得一阶行列式因子 D1 (即求得一阶行列式的最大公因子 D3)
此时已知三阶行列式因子、二阶行列式因子、一阶行列式因子,即可求得不变因子:
然后利用不变因子拆分为初级因子:
利用初级因子求得标准型:
(入-k),标准型里面的值即为k
思路:
K阶行列式因子D1、D2、D3——>不变因子d1=D1,d2=D2/D1,d3=D3/D2——>初级因子【(入-k)^0不看,只需看非1的因子】
注:初级因子为(入-k)^n代表n阶,里面的值为k,然后需要给上一层补上1,然后组合起来
8.史密斯Smith 标准型
史密斯标准型的中间元素就是不变因子
知识点:
- 任意一个非零多项式矩阵 A 都可以经过初等变换化为
Smith
标准型 - 具体步骤:确定矩阵左上角第一个元素 d1=D1 为一阶行列式因子——>然后将 d1 所在的行和列的其他元素消为 0 得到新矩阵 B1(入)——>将左上角作为 d2 ,重复反复
9.例子:Smith标准型
感觉Smith标准型就是考研里面求标准型不断消一层一层的其余元素,对角线元素就为秩
不断消去对角线的其余元素
例10:用史密斯标准型的方法求解约旦标准型
梳理一下思路: 首先求得(入E-A)的史密斯标准型,对角线内容为不变因子——>然后我们可以根据不变因子求得初级因子——>初级因子作为约旦块——>结合起来即可得到 Jordan 标准型
例题:
1.首先入E-A,经过初等行变换得到 Smith 标准型
2.Smith 标准型的中间元素都是不变因子,然后将这些不变因子转为初级因子,根据这些初级因子写出约旦标准型