【导数术】11.多变量问题的处理技巧

11.多变量问题的处理技巧

(1)等比例法or等和法处理多变量

P r a . 11.1 Pra.11.1 Pra.11.1

已知 f ( x ) = x e − x f(x)=xe^{-x} f(x)=xex,若 x 1 ≠ x 2 , f ( x 1 ) = f ( x 2 ) x_1 \neq x_2,f(x_1)=f(x_2) x1=x2,f(x1)=f(x2),证明: x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2

  • S o l u t i o n Solution Solution:不妨令 x 1 < x 2 x_1<x_2 x1<x2,显然 x 1 > 0 x_1>0 x1>0

令:
t = x 2 x 1 > 1 ⇒ x 2 = t x 1 t=\frac{x_2}{x_1}>1\Rightarrow x_2=tx_1 t=x1x2>1x2=tx1
有:
t x 1 e − t x 1 = x 1 e − x 1 tx_1e^{-tx_1}=x_1e^{-x_1} tx1etx1=x1ex1
所以:
{ x 1 = ln ⁡ t t − 1 x 2 = t ln ⁡ t t − 1 \left\{ \begin{aligned} x_1=\frac{\ln t}{t-1}\\ x_2=\frac{t\ln t}{t-1} \end{aligned} \right. x1=t1lntx2=t1tlnt
证明 t > 1 t>1 t>1时:
( t + 1 ) ln ⁡ t t − 1 > 2 \frac{(t+1)\ln t}{t-1}>2 t1(t+1)lnt>2
即可,采用对数处理技巧,等价于证明:
ln ⁡ t − 2 ( t − 1 ) t + 1 > 0 \ln t-\frac{2(t-1)}{t+1}>0 lntt+12(t1)>0
即可,证明略。

(2)变换主元法处理多变量

P r a . 11.2 Pra.11.2 Pra.11.2

已知函数 f ( x ) = 1 2 x 2 − a ln ⁡ x f(x)=\frac 1 2x^2-a\ln x f(x)=21x2alnx.

(1)若函数 f ( x ) f(x) f(x) [ 1 2 , + ∞ ) [\frac 1 2,+\infty) [21,+)单调递增,求 a a a的范围;

(2)设正实数 m 1 , m 2 , m 1 + m 2 = 1 m_1,m_2,m_1+m_2=1 m1,m2,m1+m2=1,当 a > 0 a>0 a>0时, ∀ x 1 , x 2 > 0 \forall x_1,x_2>0 x1,x2>0

求证:
f ( m 1 x 1 + m 2 x 2 ) ≤ m 1 f ( x 1 ) + m 2 f ( x 2 ) f(m_1x_1+m_2x_2)\leq m_1f(x_1)+m_2f(x_2) f(m1x1+m2x2)m1f(x1)+m2f(x2)
(3) a = 2 a=2 a=2时,设 x 1 , x 2 , x 3 > 0 , x 1 + x 2 + x 3 = 3 x_1,x_2,x_3>0,x_1+x_2+x_3=3 x1,x2,x3>0,x1+x2+x3=3,求 f ( x 1 ) + f ( x 2 ) + f ( x 3 ) f(x_1)+f(x_2)+f(x_3) f(x1)+f(x2)+f(x3)的最小值.

  • S o l u t i o n Solution Solution a ≤ 1 4 a\leq \frac 1 4 a41,证明题把 x 1 x_1 x1看作主元即可,即等价于证明:

g ( x ) = f ( m 1 x + m 2 x 2 ) − m 1 f ( x ) − m 2 f ( x 2 ) ≤ 0 , x 2 > 0 , ∀ x > 0 g(x)=f(m_1x+m_2x_2)-m_1f(x)-m_2f(x_2)\leq0,x_2>0,\forall x>0 g(x)=f(m1x+m2x2)m1f(x)m2f(x2)0,x2>0,x>0

考虑到:
g ( x 2 ) = f ( m 1 x 2 + m 2 x 2 ) − m 1 f ( x 2 ) − m 2 f ( x 2 ) = 0 g(x_2)=f(m_1x_2+m_2x_2)-m_1f(x_2)-m_2f(x_2)=0 g(x2)=f(m1x2+m2x2)m1f(x2)m2f(x2)=0
证明其是最大值即可,略。

第三问最小值为 3 2 \frac {3}{2} 23,根据第二问结合主元法推广为:
f ( 1 ) = f ( x 1 + x 2 + x 3 3 ) ≤ 1 3 f ( x 1 ) + 1 3 f ( x 2 ) + 1 3 f ( x 3 ) f(1)=f(\frac{x_1+x_2+x_3}{3})\leq \frac{1}{3}f(x_1)+\frac{1}{3}f(x_2)+\frac{1}{3}f(x_3) f(1)=f(3x1+x2+x3)31f(x1)+31f(x2)+31f(x3)
即可。

P r a . 11.3 Pra.11.3 Pra.11.3

已知函数 f ( x ) = f ′ ( 1 ) e x − 1 − f ( 0 ) x + 1 2 x 2 f(x)=f'(1)e^{x-1}-f(0)x+\frac 1 2x^2 f(x)=f(1)ex1f(0)x+21x2.

(1)求 f ( x ) f(x) f(x)解析式;

(2)若:
f ( x ) ≥ 1 2 x 2 + a x + b f(x)\geq\frac 1 2x^2+ax+b f(x)21x2+ax+b
恒成立,求 ( a + 1 ) b (a+1)b (a+1)b的最大值.

  • S o l u t i o n Solution Solution f ( x ) = e x − x + 1 2 x 2 f(x)=e^x-x+\frac 1 2x^2 f(x)=exx+21x2,最大值为 e 2 \frac e 2 2e
P r a . 11.4 Pra.11.4 Pra.11.4

求函数 f ( x , t ) = e 2 x − 2 t ( e x + x ) + x 2 + 2 t 2 + 1 f(x,t)=e^{2x}-2t(e^x+x)+x^2+2t^2+1 f(x,t)=e2x2t(ex+x)+x2+2t2+1的最小值.

  • S o l u t i o n Solution Solution:主元法or权方和不等式即可,最小值为 3 2 \frac 3 2 23

(3)韦达定理处理多变量

P r a . 11.5 Pra.11.5 Pra.11.5

已知函数 f ( x ) = ln ⁡ x + x 2 − a x f(x)=\ln x+x^2-ax f(x)=lnx+x2ax.

(1)求其单调区间;

(2)设其存在两个极值点 x 1 < x 2 x_1<x_2 x1<x2 x 1 < 1 2 x_1<\frac 1 2 x1<21,求证:
f ( x 1 ) − f ( x 2 ) > 3 4 − ln ⁡ 2 f(x_1)-f(x_2)>\frac 3 4 -\ln 2 f(x1)f(x2)>43ln2

  • S o l u t i o n Solution Solution:略。
P r a . 11.6 Pra.11.6 Pra.11.6

已知函数 f ( x ) = a x 2 − ( 2 a + 1 ) x + ln ⁡ x f(x)=ax^2-(2a+1)x+\ln x f(x)=ax2(2a+1)x+lnx.

(1)当 a > 0 a>0 a>0时,求 f ( x ) f(x) f(x)的单调区间;

(2)设 f ( x ) = f ( x ) + 2 a x f(x)=f(x)+2ax f(x)=f(x)+2ax,若 g ( x ) g(x) g(x)有两个极值点 x 1 , x 2 x_1,x_2 x1,x2,且:
g ( x 1 ) + g ( x 2 ) < λ ( x 1 + x 2 ) g(x_1)+g(x_2)<\lambda(x_1+x_2) g(x1)+g(x2)<λ(x1+x2)
恒成立,求实数 λ \lambda λ的取值范围.

  • S o l u t i o n Solution Solution:单调区间略,取值范围为:

λ > 1 e 2 − 1 2 \lambda>\frac{1}{e^2}-\frac1 2 λ>e2121

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

指针常量

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值