毕设代码训练虹膜数据集

一、U-net模型介绍

二、代码调试

1. 导入虹膜数据集

将数据集放入对应目录下
/home/zfti_g01/wyf/chalk_rice_project/unet-pytorch-main/VOCdevkit/VOC2007/

图片1

2. 划分数据集

train | val | test 按照 8:1:1的比例划分。
图片的数量分别为:
train:3455
test:430
val: 430
4295张4K3D图片

3. 训练

报错1:显存不足
图片2
############################################################################################################

解决方法1:修改batch_size

将batch_size由2调为1。
仍然报错!我认为2本身就是一个较小的batch_size值,不会影响到A40运行。

报错2:shape不匹配

图片3
图片4
############################################################################################################

解决方法2:resize图片分辨率到512x512

一开始想将图片resize到1080p,但发现自己目前的水平改不了开源的代码。
琢磨半天,想起来原始代码在512x512的分辨率下可以train.
于是将图片resize到512x512.
aha,代码成功运行。(舒服了...)		

############################################################################################################

图片5

三、训练结果

1. 主干为VGG16

在这里插入图片描述
在这里插入图片描述

2. 主干为ResNet50

图片6
Resnet50
Question 1:模型不收敛

训练结束时,loss值为0.506,模型不收敛。

Solution 1: 将dice_loss设置为False

将dice_loss由True设置为False,loss值快速下降,趋近于0.

############################################################################################################
在这里插入图片描述

4. 结果对比

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值