一、U-net模型介绍
二、代码调试
1. 导入虹膜数据集
将数据集放入对应目录下
/home/zfti_g01/wyf/chalk_rice_project/unet-pytorch-main/VOCdevkit/VOC2007/
2. 划分数据集
train | val | test 按照 8:1:1的比例划分。
图片的数量分别为:
train:3455
test:430
val: 430
共4295张4K3D图片
3. 训练
报错1:显存不足
############################################################################################################
解决方法1:修改batch_size
将batch_size由2调为1。
仍然报错!我认为2本身就是一个较小的batch_size值,不会影响到A40运行。
报错2:shape不匹配
############################################################################################################
解决方法2:resize图片分辨率到512x512
一开始想将图片resize到1080p,但发现自己目前的水平改不了开源的代码。
琢磨半天,想起来原始代码在512x512的分辨率下可以train.
于是将图片resize到512x512.
aha,代码成功运行。(舒服了...)
############################################################################################################
三、训练结果
1. 主干为VGG16
2. 主干为ResNet50
Question 1:模型不收敛
训练结束时,loss值为0.506,模型不收敛。
Solution 1: 将dice_loss设置为False
将dice_loss由True设置为False,loss值快速下降,趋近于0.
############################################################################################################