基于YOLOv4的绝缘子检测算法

针对绝缘子检测难题,本文提出一种基于YOLOv4的改进算法。通过自适应伽马变换调整图像亮度,用可变形卷积处理形变,提升检测精度至93.2%,速度达43FPS,优于Faster RCNN、YOLOv3等算法。
摘要由CSDN通过智能技术生成

摘要

针对绝缘子检测过程中图像易出现失真,以及模型受外界环境影响较大的问题,提出一种基于YOLOv4的绝缘子检测算法。该算法首先采用自适应伽马变换自动调整绝缘子图像的明亮度,然后使用YOLOv4网络学习绝缘子不同层次的特征表示。考虑到YOLOv4网络需要输入固定的图像大小,而强行对图像进行拉伸会使得目标出现扭曲,故采用可变形卷积替换传统卷积的方法,从而提高模型的特征提取能力,最终输出绝缘子的位置信息及其类别。在中国电力绝缘子公开数据库中进行仿真实验,结果表明该算法的测试精度和检测速度分别达到了93.2%和43FPS。该算法的总体性能优于Faster RCNN、YOLOv3、CornerNet等常用算法。

0 引言

随着我国智能电网技术的快速发展,各种复杂环境下的输电线路建设已经取得巨大成功,然而输电线路常年暴露在大自然中,时常会出现一些故障,给电力输送的稳定性和安全性均造成较大影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值