基于双向LSTM卷积网络与注意力机制的自动睡眠分期模型

本文提出了一种结合卷积神经网络、双向长短时记忆网络与注意力机制的自动睡眠分期模型,用于解决深度学习模型在睡眠分期中的梯度消失、时序信息学习和样本不平衡问题。实验结果显示,该模型在睡眠分期的准确率和F1值上均有所提升,尤其是在处理睡眠过渡阶段(如S1)时,性能显著增强。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

睡眠是人的一生中不可缺少的一种复杂生理过程。充足的睡眠能使大脑和身体得到充分的休息和恢复。由于如今不健康的生活方式的影响,睡眠障碍已成为现代社会的严重问题。长时间的睡眠障碍会使人精神不振、免疫力下降,还会诱发心脑血管疾病等[1]。因此,及早诊断睡眠障碍有助于发现异常变化并防止疾病进一步发展,对身心健康具有重要的意义。

睡眠分期是诊断睡眠障碍和检测睡眠质量的有效方式。在实际临床上,首先利用多导睡眠监测仪(polysomnography, PSG)获取脑电、眼电、肌电、脉搏、血氧饱和度、呼吸等信号,再由专业医师对照国际通用的睡眠分期标准[2-4],对每个30 s时长的睡眠数据进行睡眠时期的人工划分。研究表明,睡眠深浅的变化是由神经中枢活动的变化引起的,因此综合上述信号在不同睡眠时期的特征,能够很好地反映睡眠模式[5-6]。然而,整晚的睡眠数据量较大,对专业医师的资质要求高,人工判读烦琐且耗时。随着大数据、人工智能等创新技术的发展,自动睡眠分期方法逐渐成为快捷的辅助方式,受到了广泛的研究与关注[7]。

近年来,自动睡眠分期方法主要涵盖了基于机器学习和深度学习的方法。基于机器学习的自动睡眠分期方法通常包含了特征提取和睡眠阶段分类两个步骤。通过时域分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值