迅速准确地检出故障工况并进行故障隔离对现代工业生产过程的安全性及产品质量具有重要意义[1]。随着生产工艺复杂程度及自动化水平的提升,在故障检测中建立过程机理模型变得更加困难且不易求取,基于简化后模型的检测效果也并不理想。近年来,基于数据驱动的故障检测方法得到了广泛关注和应用[2],其中常用的有主元分析法(principal component analysis, PCA)[3]、偏最小二乘回归(partial least squares, PLS)[4]、基于k近邻算法的故障检测(fault detection using k-nearest neighborhood, FD-KNN)[5]等。
基于数据的故障检测方法中,建模数据对于故障检测的效果起着决定性作用。传统机器学习方法中的浅层模型往往无法满足过程大数据的解析需求,因此学者们提出了不同的深层模型以解决实际复杂问题[6-9]。其中,生成对抗网络[10](generative adversarial network, GAN)由于其特殊的训练思想及生成能力受到了研究人员的广泛关注,已被应用于图像、视频、文本处理等领域。文献[11]提出一种新的对抗训练方法并证明了其在指定数据集上的准确性,提升了卷积语义分割网络的训练效果。文献[12]提出一种感知生成对抗网络,减少了小对象与大对象之间的表示差异,从而有效改善了低分辨率与高噪声带来的小对象检测困难问题。通过训练深度卷积生成对抗网络&#x