采用编码输入的生成对抗网络故障检测方法及应用

该文提出了一种采用自编码器改进的生成对抗网络(EIGAN)用于故障检测的方法。通过自编码器提取训练集的低维特征作为生成器输入,提升生成器生成样本的质量,从而增强判别器的性能。这种方法在TE过程和磨煤机数据仿真中表现出较高的故障检出率,优于传统的PCA和KNN方法,以及基本的GAN模型。文章指出,EIGAN方法可以有效减少计算量,降低离群点影响,且在保持较低误报率的同时提高报警率。
摘要由CSDN通过智能技术生成

迅速准确地检出故障工况并进行故障隔离对现代工业生产过程的安全性及产品质量具有重要意义[1]。随着生产工艺复杂程度及自动化水平的提升,在故障检测中建立过程机理模型变得更加困难且不易求取,基于简化后模型的检测效果也并不理想。近年来,基于数据驱动的故障检测方法得到了广泛关注和应用[2],其中常用的有主元分析法(principal component analysis, PCA)[3]、偏最小二乘回归(partial least squares, PLS)[4]、基于k近邻算法的故障检测(fault detection using k-nearest neighborhood, FD-KNN)[5]等。

基于数据的故障检测方法中,建模数据对于故障检测的效果起着决定性作用。传统机器学习方法中的浅层模型往往无法满足过程大数据的解析需求,因此学者们提出了不同的深层模型以解决实际复杂问题[6-9]。其中,生成对抗网络[10](generative adversarial network, GAN)由于其特殊的训练思想及生成能力受到了研究人员的广泛关注,已被应用于图像、视频、文本处理等领域。文献[11]提出一种新的对抗训练方法并证明了其在指定数据集上的准确性,提升了卷积语义分割网络的训练效果。文献[12]提出一种感知生成对抗网络,减少了小对象与大对象之间的表示差异,从而有效改善了低分辨率与高噪声带来的小对象检测困难问题。通过训练深度卷积生成对抗网络&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗伯特之技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值