四套卷数二 选填

在这里插入图片描述f
分析: 该 题 主 要 是 用 到 了 夹 逼 定 理 , 一 个 重 要 的 不 等 式 : 该题主要是用到了夹逼定理,一个重要的不等式:
设 a < b < c , 则 有 a ≤ lim ⁡ n → ∞ [ ( x 2 2 ) n + ( x 2 ) n + x n ] ≤ c 设a<b<c,则有a \le \lim_{n \rightarrow \infty }[(\frac{x^{2}}{2})^{n}+(\frac{x}{2})^{n}+x^{n}]\le c a<b<c,alimn[(2x2)n+(2x)n+xn]c

在这里插入图片描述
分析: 题 型 分 析 错 误 , 该 题 是 定 积 分 比 大 小 问 题 , 已 知 原 函 数 的 基 本 图 像 , 应 用 N − L 法 进 行 求 解 。 显 然 , 其 积 分 后 与 1 进 行 比 大 小 , 且 原 函 数 是 一 个 凹 函 数 , 则 f 题型分析错误,该题是定积分比大小问题,已知原函数的基本图像,应用N-L法进行求解。显然,其积分后与1进行比大小,且原函数是一个凹函数,则f NL1f
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值