f
分析:
该
题
主
要
是
用
到
了
夹
逼
定
理
,
一
个
重
要
的
不
等
式
:
该题主要是用到了夹逼定理,一个重要的不等式:
该题主要是用到了夹逼定理,一个重要的不等式:
设
a
<
b
<
c
,
则
有
a
≤
lim
n
→
∞
[
(
x
2
2
)
n
+
(
x
2
)
n
+
x
n
]
≤
c
设a<b<c,则有a \le \lim_{n \rightarrow \infty }[(\frac{x^{2}}{2})^{n}+(\frac{x}{2})^{n}+x^{n}]\le c
设a<b<c,则有a≤limn→∞[(2x2)n+(2x)n+xn]≤c
分析:
题
型
分
析
错
误
,
该
题
是
定
积
分
比
大
小
问
题
,
已
知
原
函
数
的
基
本
图
像
,
应
用
N
−
L
法
进
行
求
解
。
显
然
,
其
积
分
后
与
1
进
行
比
大
小
,
且
原
函
数
是
一
个
凹
函
数
,
则
f
题型分析错误,该题是定积分比大小问题,已知原函数的基本图像,应用N-L法进行求解。显然,其积分后与1进行比大小,且原函数是一个凹函数,则f
题型分析错误,该题是定积分比大小问题,已知原函数的基本图像,应用N−L法进行求解。显然,其积分后与1进行比大小,且原函数是一个凹函数,则f