EXCEL表格如何制作合同到期提醒

本文教你如何在Excel中利用公式制作合同到期提醒功能,只需输入结束日期,自动生成到期前的预警,提升工作效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

EXCEL表格如何制作合同到期提醒

目录

EXCEL表格如何制作合同到期提醒

1、在表格中输入“ =C3-TODAY() ” 其中C3表示结束日期的单元格

2、其他行向下拖拉,自动填充。


1、在表格中输入“ =C3-TODAY() ” 其中C3表示结束日期的单元格

2、其他行向下拖拉,自动填充。

安利一个R语言的优秀博主及其CSDN专栏:
博主博客地址:

Data+Science+Insight的博客_CSDN博客-R语言从入门到机器学习,数据科学从0到1,机器学习面试+横扫千军领域博主

博主为CSDN数据科学领域知名博主(博客内容包括:数据科学从0到1、R语言从入门到机器学习、机器学习面试+横扫千军、Python编程技巧高效复用等系列) 毕业于中国科学院大学智能计算专业。研究方向为,数据挖掘、机器学习、深度学习等。深度参与了多项数据挖掘、计算机视觉以及自然语言处理相关项目,例如,社会计算、异常分析、聚类分析、预测分析、序列标记、语言生成、OCR、图像分类+检测+分割等。现任某茅数据科学家,负责数据科学团队的管理及项目实施。曾就职于中国信科集团,负责大数据与机器学习组的管理及项目实施。曾参与国家级医疗大数据平台机器学习项目的开发和建设、构建了完整的数据链路、特征池、模型仓库、迁移中心、数据应用、数据服务Pipeline,并与AWS中国基于AWS云服务合作开发大型工业互联网项目,积累了工业互联网模型构建、部署、监控实战经验。

Microsoft Excel是Microsoft为使用Windows和Apple Macintosh操作系统的电脑编写的一款电子表格软件。直观的界面、出色的计算功能和图表工具,再加上成功的市场营销,使Excel成为最流行的个人计算机数据处理软件。在1993年,作为Microsoft Office的组件发布了5.0版之后,Excel就开始成为所适用操作平台上的电子制表软件的霸主。

在 Excel中,函数实际上是一个预先定义的特定计算公式。按照这个特定的计算公式对一个或多个参数进行计算,并得出一个或多个计算结果,叫做函数值。使用这些函数不仅可以完成许多复杂的计算,而且还可以简化公式的繁杂程度。

我们生活的这个世界是丰富多彩的,几乎所有的知识都来自于视觉。也许无法记住一连串的数字,以及它们之间的关系和趋势。但是可以很轻松地记住一幅图画或者一个曲线。因此通过使用图表,会使得用Excel编制的工作表更易于理解和交流。
 

<think>好的,用户想用Python实现合同到期提醒的功能。首先,我需要明确用户的需求。合同到期提醒通常需要定期检查数据库中或文件中的合同信息,找出即将到期合同,然后通过邮件或其他方式通知相关人员。 首先,我应该考虑数据结构。合同信息可能包括员工姓名、合同开始日期、结束日期等。用户可能将这些信息存储在数据库或者Excel文件中。这里假设用户使用CSV文件,因为比较常见且易于处理。 接下来,需要读取合同数据。Python的pandas库很适合处理表格数据,可以方便地读取CSV文件,并处理日期。然后,计算距离合同到期的剩余天数。当前日期可以用datetime模块获取,将合同结束日期转换为datetime对象后,减去当前日期即可得到剩余天数。 然后,筛选出剩余天数在指定阈值内的合同,比如30天内到期的。这部分可以用pandas的条件筛选来实现。 之后,生成提醒信息。可能需要将筛选出的合同信息整理成易于阅读的格式,比如字符串或HTML表格,方便后续发送邮件。 关于邮件通知,需要使用smtplib和email库来发送邮件。需要配置SMTP服务器的信息,比如服务器地址、端口、发件人邮箱和密码。同时,要确保邮件的安全性,可能需要使用SSL或TLS。 另外,用户可能希望定期自动运行这个脚本,比如每天一次。这时候可以考虑使用计划任务,比如Linux的cron或者Windows的任务计划程序。 在代码示例中,首先导入必要的库,定义文件路径,读取数据。处理日期时要注意格式转换,避免因格式问题导致的错误。计算剩余天数后,筛选出符合条件的数据。如果没有到期合同,可以跳过发送邮件。否则,构造邮件内容,连接SMTP服务器发送邮件。 还需要考虑异常处理,比如文件不存在、日期格式错误、邮件发送失败等情况,增加try-except块来捕获异常,提高脚本的健壮性。 用户可能还会关心如何配置邮件服务器,比如使用公司的SMTP服务或者第三方如Gmail。如果是Gmail,可能需要启用应用专用密码,并允许不太安全的应用访问,不过这可能存在安全风险,建议使用OAuth2认证,但为了简化示例,可能先用简单的方法。 另外,关于数据存储,如果用户的数据在数据库中,比如MySQL或PostgreSQL,代码需要调整,使用相应的库如sqlalchemy来连接数据库,执行查询。但用户的问题中没有提到数据库,所以示例中使用CSV文件比较合适。 最后,提醒用户根据实际情况调整阈值,比如30天,或者添加其他通知方式,如短信、企业微信机器人等。还可以建议将脚本部署到服务器,并设置定时任务,实现自动化。 总结步骤:读取数据→处理日期→计算剩余天数→筛选数据→生成提醒→发送邮件→自动化部署。确保每个环节都有适当的错误处理,代码清晰易懂,用户可以根据注释进行修改。</think>### Python实现合同到期提醒的完整方案 #### 一、数据准备(CSV示例) ```csv 员工姓名,合同开始日期,合同结束日期,联系方式 张三,2023-01-01,2024-01-01,zhangsan@company.com 李四,2023-06-15,2024-06-15,lisi@company.com 王五,2022-12-01,2023-12-01,wangwu@company.com ``` #### 二、实现代码 ```python import pandas as pd from datetime import datetime import smtplib from email.mime.text import MIMEText def check_contract_expiry(csv_path, alert_days=30): """检查合同到期情况 Args: csv_path: 合同数据文件路径 alert_days: 提前提醒天数(默认30天) """ try: # 读取合同数据 df = pd.read_csv(csv_path) # 日期格式转换 df['合同结束日期'] = pd.to_datetime(df['合同结束日期']) today = datetime.today() # 计算剩余天数 df['剩余天数'] = (df['合同结束日期'] - today).dt.days # 筛选需要提醒的记录 alert_df = df[(df['剩余天数'] <= alert_days) & (df['剩余天数'] >= 0)] if not alert_df.empty: send_email_alert(alert_df, alert_days) print(f"发现{alert_df.shape[0]}份即将到期合同,已发送提醒邮件") else: print("当前没有需要提醒合同") except Exception as e: print(f"处理过程中发生错误: {str(e)}") def send_email_alert(alert_df, alert_days): """发送邮件提醒 Args: alert_df: 需要提醒的DataFrame alert_days: 提前提醒天数 """ # 邮件配置(需根据实际情况修改) smtp_server = "smtp.example.com" smtp_port = 587 sender = "hr@company.com" password = "your_password" # 构造邮件内容 recipients = ", ".join(alert_df['联系方式'].tolist()) subject = f"合同到期提醒({alert_days}天内到期)" content = ["以下合同即将到期:\n"] for _, row in alert_df.iterrows(): content.append( f"{row['员工姓名']}: 合同截止 {row['合同结束日期'].strftime('%Y-%m-%d')} " f"(剩余{row['剩余天数']}天)" ) msg = MIMEText("\n".join(content)) msg['Subject'] = subject msg['From'] = sender msg['To'] = recipients # 发送邮件 try: with smtplib.SMTP(smtp_server, smtp_port) as server: server.starttls() server.login(sender, password) server.sendmail(sender, recipients.split(','), msg.as_string()) except Exception as e: print(f"邮件发送失败: {str(e)}") # 使用示例 if __name__ == "__main__": check_contract_expiry("contracts.csv") ``` #### 三、关键技术说明 1. **日期处理**:使用`pandas.to_datetime`进行日期格式转换,确保日期计算准确性 2. **时间差计算**:`(df['合同结束日期'] - today).dt.days`计算精确天数差 3. **条件筛选**:通过布尔索引`(df['剩余天数'] <= alert_days) & (df['剩余天数'] >= 0)`过滤有效提醒数据 4. **邮件协议**:采用SMTP协议发送提醒,支持TLS加密传输[^3] #### 四、扩展优化建议 1. **数据库集成**:可改用SQLAlchemy连接MySQL等数据库 ```python from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://user:pass@host/db') df = pd.read_sql("SELECT * FROM contracts", engine) ``` 2. **定时任务**:使用APScheduler实现自动检测 ```python from apscheduler.schedulers.blocking import BlockingScheduler scheduler = BlockingScheduler() @scheduler.scheduled_job('cron', hour=9) def daily_check(): check_contract_expiry("contracts.csv") scheduler.start() ``` 3. **多通知渠道**:可集成企业微信/钉钉机器人 4. **日志记录**:添加logging模块记录操作日志
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值