R假设检验之Breusch-Godfrey检验(Breusch-Godfrey Test)

本文介绍了R中的Breusch-Godfrey检验用于检测线性回归模型残差的高阶自相关性。通过检验统计量和P值,我们可以判断是否存在自相关,并在检测到自相关时采取相应措施,如调整模型或处理季节性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R假设检验之Breusch-Godfrey检验(Breusch-Godfrey Test)

 See the source image

 

线性回归中的一个关键假设是残差之间不存在相关性,即残差是独立的。

为了测试一阶自相关,我们可以执行Durbin-Watson检验。然而,如果我们想测试高阶的自相关(autocorrelation),那么我们需要执行一个Breusch-Godfrey检验。

Breusch-Godfrey检验使用以下假设:

H0(零假设):小于或等于p的任何阶都不存在自相关。

Ha(替代假设):在小于或等于p的某个阶上存在自相关。

检验统计量服从p个自由度的卡方分布。

如果这个检验统计量对应的p值小于一定的显著性水平(如0.05),那么我们可以拒绝零假设,并得出小于或等于p的某个阶的残差之间存

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值