JUC——深入解析共享模型之工具

线程池

线程池

自定义线程池

步骤1:自定义拒绝策略接口

@FunctionalInterface // 拒绝策略
interface RejectPolicy<T> {
    void reject(BlockingQueue<T> queue, T task);
}

步骤2:自定义任务队列

class BlockingQueue<T> {
    // 1. 任务队列
    private Deque<T> queue = new ArrayDeque<>();
    // 2. 锁
    private ReentrantLock lock = new ReentrantLock();
    // 3. 生产者条件变量
    private Condition fullWaitSet = lock.newCondition();
    // 4. 消费者条件变量
    private Condition emptyWaitSet = lock.newCondition();
    // 5. 容量
    private int capcity;
    public BlockingQueue(int capcity) {
        this.capcity = capcity;
    }
    // 带超时阻塞获取
    public T poll(long timeout, TimeUnit unit) {
        lock.lock();
        try {
            // 将 timeout 统一转换为 纳秒
            long nanos = unit.toNanos(timeout);
            while (queue.isEmpty()) {
                try {
                    // 返回值是剩余时间
                    if (nanos <= 0) {
                        return null;
                    }
                    nanos = emptyWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    // 阻塞获取
    public T take() {
        lock.lock();
        try {
            while (queue.isEmpty()) {
                try {
                    emptyWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            T t = queue.removeFirst();
            fullWaitSet.signal();
            return t;
        } finally {
            lock.unlock();
        }
    }
    // 阻塞添加
    public void put(T task) {
        lock.lock();
        try {
            while (queue.size() == capcity) {
                try {
                    log.debug("等待加入任务队列 {} ...", task);
                    fullWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            queue.addLast(task);
            emptyWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }
    // 带超时时间阻塞添加
    public boolean offer(T task, long timeout, TimeUnit timeUnit) {
        lock.lock();
        try {
            long nanos = timeUnit.toNanos(timeout);
            while (queue.size() == capcity) {
                try {
                    if(nanos <= 0) {
                        return false;
                    }
                    log.debug("等待加入任务队列 {} ...", task);
                    nanos = fullWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            log.debug("加入任务队列 {}", task);
            queue.addLast(task);
            emptyWaitSet.signal();
            return true;
        } finally {
            lock.unlock();
        }
    }
    public int size() {
        lock.lock();
        try {
            return queue.size();
        } finally {
            lock.unlock();
        }
    }
    public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
        lock.lock();
        try {
            // 判断队列是否满
            if(queue.size() == capcity) {
                rejectPolicy.reject(this, task);
            } else { // 有空闲
                log.debug("加入任务队列 {}", task);
                queue.addLast(task);
                emptyWaitSet.signal();
            }
        } finally {
            lock.unlock();
        }
    }
}

步骤3:自定义线程池

class ThreadPool {
    // 任务队列
    private BlockingQueue<Runnable> taskQueue;
    // 线程集合
    private HashSet<Worker> workers = new HashSet<>();
    // 核心线程数
    private int coreSize;
    // 获取任务时的超时时间
    private long timeout;
    private TimeUnit timeUnit;
    private RejectPolicy<Runnable> rejectPolicy;
​
    // 执行任务
    public void execute(Runnable task) {
        // 当任务数没有超过 coreSize 时,直接交给 worker 对象执行
        // 如果任务数超过 coreSize 时,加入任务队列暂存
        synchronized (workers) {
            if (workers.size() < coreSize) {
                Worker worker = new Worker(task);
                log.debug("新增 worker{}, {}", worker, task);
                workers.add(worker);
                worker.start();
            } else {
// taskQueue.put(task);
                // 1) 死等
                // 2) 带超时等待
                // 3) 让调用者放弃任务执行
                // 4) 让调用者抛出异常
                // 5) 让调用者自己执行任务
                taskQueue.tryPut(rejectPolicy, task);
            }
        }
    }
​
    public ThreadPool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapcity,
                      RejectPolicy<Runnable> rejectPolicy) {
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.taskQueue = new BlockingQueue<>(queueCapcity);
        this.rejectPolicy = rejectPolicy;
    }
​
    class Worker extends Thread {
        private Runnable task;
​
        public Worker(Runnable task) {
            this.task = task;
        }
​
        @Override
        public void run() {
            // 执行任务
            // 1) 当 task 不为空,执行任务
            // 2) 当 task 执行完毕,再接着从任务队列获取任务并执行
// while(task != null || (task = taskQueue.take()) != null) {
            while (task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
                try {
                    log.debug("正在执行...{}", task);
                    task.run();
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    task = null;
                }
            }
            synchronized (workers) {
                log.debug("worker 被移除{}", this);
                workers.remove(this);
            }
        }
    }
}

步骤四:测试

public static void main(String[] args) {
    ThreadPool threadPool = new ThreadPool(1,
                                           1000, TimeUnit.MILLISECONDS, 1, (queue, task)->{
                                               // 1. 死等
                                               // queue.put(task);
                                               // 2) 带超时等待
                                               // queue.offer(task, 1500, TimeUnit.MILLISECONDS);
                                               // 3) 让调用者放弃任务执行
                                               // log.debug("放弃{}", task);
                                               // 4) 让调用者抛出异常
                                               // throw new RuntimeException("任务执行失败 " + task);
                                               // 5) 让调用者自己执行任务
                                               task.run();
                                           });
    for (int i = 0; i < 4; i++) {
        int j = i;
        threadPool.execute(() -> {
            try {
                Thread.sleep(1000L);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.debug("{}", j);
        });
    }
}

自己实现的线程池

@Slf4j(topic = "c.PoolTest1")
public class PoolTest1 {
    public static void main(String[] args) {
        Pool pool = new Pool(2, 1000, TimeUnit.MILLISECONDS, 1, (queue, task) -> {
            // 死等
            // queue.push(task);
​
            // 带超时等待
            // queue.offer(task, 2000,TimeUnit.MILLISECONDS);
​
            // 让调用者放弃任务执行
            // log.info("啥都不写,就是放弃{}!!!", task);
​
            // 让调用者抛出异常
            // throw new RuntimeException("抛出异常,后面的都不能运行");
​
            // 让调用者自己操作
            task.run();
        });
        for (int i = 0; i < 4; i++) {
            int j = i;
            pool.execute(() -> {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.info("{}", j);
            });
        }
    }
​
}
​
@Slf4j(topic = "c.Pool")
class Pool {
​
    // 任务队列
    private BlockingQueues<Runnable> taskQueue;
​
    // 线程集合
    private HashSet<Work> workers = new HashSet<>();
​
    // 核心线程数
    private int coreSize;
​
    // 获取任务的超时时间
    private long timeout;
​
    // 队列的容量
    private TimeUnit timeUnit;
​
    // 拒绝策略的接口
    private RejectPolicy<Runnable> rejectPolicy;
​
    public Pool(int coreSize, long timeout, TimeUnit timeUnit, int queueCapicity, RejectPolicy<Runnable> rejectPolicy) {
        this.taskQueue = new BlockingQueues<>(queueCapicity);
        this.coreSize = coreSize;
        this.timeout = timeout;
        this.timeUnit = timeUnit;
        this.rejectPolicy = rejectPolicy;
    }
​
    // 执行任务
    public void execute(Runnable task) {
        // 锁住workers
        synchronized (workers) {
            if (workers.size() < coreSize) {
                // 创建新的工作线程
                Work work = new Work(task);
                log.info("新增worker:{}", work);
                // 放入工作线程集合
                workers.add(work);
                work.start();
            } else {
                // 如果工作线程不够用,放入阻塞队列中
                // 死等
                // taskQueue.push(task);
                taskQueue.tryPut(rejectPolicy, task);
            }
        }
    }
​
    class Work extends Thread {
​
        // 任务
        private Runnable task;
​
        public Work(Runnable task) {
            this.task = task;
        }
​
        @Override
        public void run() {
            // 执行任务
            // 1.如果任务不为空,直接执行
            // 2.如果任务为空,那么从任务队列中获取
            // while (task != null || (task = taskQueue.take()) != null) {  // 如果没加超时时间,线程会一直等待任务
            while (task != null || (task = taskQueue.poll(timeout, timeUnit)) != null) {
                try {
                    log.info("正在执行...{}", task);
                    task.run();
                } catch (Exception exception) {
                    exception.printStackTrace();
                } finally {
                    // 执行完毕,任务为空
                    task = null;
                }
            }
            synchronized (workers) {
                log.info("一直没任务,移除线程:{}", this);
                workers.remove(this);
            }
        }
    }
}
​
/**
 * 阻塞队列
 *
 * @param <T>
 */
@Slf4j(topic = "c.BlockingQueues")
class BlockingQueues<T> {
    // 线程队列
    private Deque<T> quque = new ArrayDeque<>();
​
    // 锁
    private ReentrantLock lock = new ReentrantLock();
​
    // 生产者条件变量
    private Condition proWaitSet = lock.newCondition();
​
    // 消费者条件变量
    private Condition conWaitSet = lock.newCondition();
​
    // 容量
    private int capicity;
​
    public BlockingQueues(int capicity) {
        this.capicity = capicity;
    }
​
    // 带超时的阻塞获取
    public T poll(long waitTime, TimeUnit timeUnit) {
        // 先加锁
        lock.lock();
        try {
            // 将time统一转化为纳秒
            long nanos = timeUnit.toNanos(waitTime);
            while (quque.isEmpty()) {
                try {
                    // 等待完毕
                    if (nanos <= 0) {
                        return null;
                    }
​
                    // 没有就等待
                    // 此时重新赋值是为了防止虚假唤醒,唤醒之后,时间就变少了
                    // awaitNanos方法会返回剩余时间
                    nanos = conWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
​
            return quque.poll();
        } finally {
            proWaitSet.signal();
            lock.unlock();
        }
    }
​
    // 阻塞获取
    public T take() {
        // 先加锁
        lock.lock();
        try {
            while (quque.isEmpty()) {
                try {
                    // 没有就等待
                    conWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
​
            return quque.poll();
        } finally {
            proWaitSet.signal();
            lock.unlock();
        }
    }
​
    public void push(T t) {
        // 先加锁
        try {
            lock.lock();
            while (quque.size() == capicity) {
                try {
                    log.info("任务队列已满,等待加入:{}", t);
                    proWaitSet.await();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            quque.addLast(t);
            log.info("加入任务队列:{}", t);
            conWaitSet.signal();
        } finally {
            lock.unlock();
        }
    }
​
    /**
     * 带超时时间的阻塞添加
     *
     * @param task
     * @param timeout
     * @param timeUnit
     * @return
     */
    public boolean offer(T task, int timeout, TimeUnit timeUnit) {
        // 先加锁
        try {
            lock.lock();
            long nanos = timeUnit.toNanos(timeout);
            while (quque.size() == capicity) {
                try {
                    if (nanos <= 0) {
                        return false;
                    }
                    log.info("任务队列已满,等待加入:{}", task);
                    nanos = proWaitSet.awaitNanos(nanos);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            quque.addLast(task);
            log.info("加入任务队列:{}", task);
            conWaitSet.signal();
            return true;
        } finally {
            lock.unlock();
        }
    }
​
    /**
     * 带有拒接策略的放入任务
     *
     * @param rejectPolicy
     * @param task
     */
    public void tryPut(RejectPolicy<T> rejectPolicy, T task) {
        try {
            lock.lock();
            // 队列已满
            if (quque.size() == capicity) {
                // 调用操作者实现的操作
                rejectPolicy.reject(this, task);
            } else {
                // 还有空闲
                quque.addLast(task);
                log.info("加入任务队列:{}", task);
                conWaitSet.signal();
            }
        } finally {
            lock.unlock();
        }
    }
​
    public int size() {
        lock.lock();
        try {
            return quque.size();
        } finally {
            lock.unlock();
        }
    }
​
}
​
/**
 * 拒接策略
 *
 * @param <T>
 */
@FunctionalInterface
interface RejectPolicy<T> {
    void reject(BlockingQueues<T> queues, T task);
}

ThreadPoolExecutor

线程池状态

ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量

从数字上比较,TERMINATED > TIDYING > STOP > SHUTDOWN > RUNNING(因为是高三位,第一位是符号所以RUNNING是负数)

这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 cas 原子操作进行赋值。

// c 为旧值, ctlOf 返回结果为新值
ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))));
​
// rs 为高 3 位代表线程池状态, wc 为低 29 位代表线程个数,ctl 是合并它们
private static int ctlOf(int rs, int wc) { return rs | wc; }

构造方法

public ThreadPoolExecutor(int corePoolSize,
                                             int maximumPoolSize,
                                             long keepAliveTime,
                                             TimeUnit unit,
                                             BlockingQueue<Runnable> workQueue,
                                             ThreadFactory threadFactory,
                                             RejectedExecutionHandler handler)
  • corePoolSize 核心线程数目 (最多保留的线程数)

  • maximumPoolSize 最大线程数目

  • keepAliveTime 生存时间 - 针对救急线程

  • unit 时间单位 - 针对救急线程

  • workQueue 阻塞队列

  • threadFactory 线程工厂 - 可以为线程创建时起个好名字

  • handler 拒绝策略

工作方式:

  • 线程池中刚开始没有线程,当一个任务提交给线程池后,线程池会创建一个新线程来执行任务。

  • 当线程数达到 corePoolSize 并没有线程空闲,这时再加入任务,新加的任务会被加入workQueue 队列排队,直到有空闲的线程。

  • 如果队列选择了有界队列,那么任务超过了队列大小时,会创建 maximumPoolSize - corePoolSize 数目的线程来救急。

  • 如果线程到达 maximumPoolSize 仍然有新任务这时会执行拒绝策略。拒绝策略 jdk 提供了 4 种实现,其它著名框架也提供了实现

    • AbortPolicy 让调用者抛出 RejectedExecutionException 异常,这是默认策略

    • CallerRunsPolicy 让调用者运行任务

    • DiscardPolicy 放弃本次任务

    • DiscardOldestPolicy 放弃队列中最早的任务,本任务取而代之

    • Dubbo 的实现,在抛出 RejectedExecutionException 异常之前会记录日志,并 dump 线程栈信息,方

    • 便定位问题

    • Netty 的实现,是创建一个新线程来执行任务

    • ActiveMQ 的实现,带超时等待(60s)尝试放入队列,类似我们之前自定义的拒绝策略

    • PinPoint 的实现,它使用了一个拒绝策略链,会逐一尝试策略链中每种拒绝策略

  • 当高峰过去后,超过corePoolSize 的救急线程如果一段时间没有任务做,需要结束节省资源,这个时间由keepAliveTime 和 unit 来控制。

根据这个构造方法,JDK Executors 类中提供了众多工厂方法来创建各种用途的线程池。

newFixedThreadPool

public static ExecutorService newFixedThreadPool(int nThreads) {
    return new ThreadPoolExecutor(nThreads, nThreads,
            0L, TimeUnit.MILLISECONDS,
            new LinkedBlockingQueue<Runnable>());
}

特点

  • 核心线程数是 0, 最大线程数是 Integer.MAX_VALUE,救急线程的空闲生存时间是 60s,意味着

    • 全部都是救急线程(60s 后可以回收)

    • 救急线程可以无限创建

  • 队列采用了 SynchronousQueue 实现特点是,它没有容量,没有线程来取是放不进去的(一手交钱、一手交货)

SynchronousQueue<Integer> integers = new SynchronousQueue<>();
new Thread(() -> {
    try {
        log.debug("putting {} ", 1);
        integers.put(1);
        log.debug("{} putted...", 1);
        log.debug("putting...{} ", 2);
        integers.put(2);
        log.debug("{} putted...", 2);
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t1").start();
sleep(1);
new Thread(() -> {
    try {
        log.debug("taking {}", 1);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t2").start();
sleep(1);
new Thread(() -> {
    try {
        log.debug("taking {}", 2);
        integers.take();
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
},"t3").start();

输出

11:48:15.500 c.TestSynchronousQueue [t1] - putting 1 
11:48:16.500 c.TestSynchronousQueue [t2] - taking 1 
11:48:16.500 c.TestSynchronousQueue [t1] - 1 putted... 
11:48:16.500 c.TestSynchronousQueue [t1] - putting...2 
11:48:17.502 c.TestSynchronousQueue [t3] - taking 2 
11:48:17.503 c.TestSynchronousQueue [t1] - 2 putted...

评价 整个线程池表现为线程数会根据任务量不断增长,没有上限,当任务执行完毕,空闲 1分钟后释放线程。 适合任务数比较密集,但每个任务执行时间较短的情况。

newSingleThreadExecutor

使用场景:

希望多个任务排队执行。线程数固定为 1,任务数多于 1 时,会放入无界队列排队。任务执行完毕,这唯一的线程也不会被释放。

区别:

  • 自己创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,而线程池还会新建一个线程,保证池的正常工作

  • Executors.newSingleThreadExecutor() 线程个数始终为1,不能修改

    • FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法

  • Executors.newFixedThreadPool(1) 初始时为1,以后还可以修改

    • 对外暴露的是 ThreadPoolExecutor 对象,可以强转后调用 setCorePoolSize 等方法进行修改

提交任务

// 执行任务
void execute(Runnable command);
​
// 提交任务 task,用返回值 Future 获得任务执行结果
<T> Future<T> submit(Callable<T> task);
​
// 提交 tasks 中所有任务
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
 throws InterruptedException;
 
// 提交 tasks 中所有任务,带超时时间
<T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
        long timeout, TimeUnit unit)
 throws InterruptedException;
 
// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消
<T> T invokeAny(Collection<? extends Callable<T>> tasks)
 throws InterruptedException, ExecutionException;
 
// 提交 tasks 中所有任务,哪个任务先成功执行完毕,返回此任务执行结果,其它任务取消,带超时时间
<T> T invokeAny(Collection<? extends Callable<T>> tasks,
        long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;

关闭线程

shutdown

/*
线程池状态变为 SHUTDOWN
- 不会接收新任务
- 但已提交任务会执行完
- 此方法不会阻塞调用线程的执行
*/
void shutdown();
public void shutdown() {
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(SHUTDOWN);
        // 仅会打断空闲线程
        interruptIdleWorkers();
        onShutdown(); // 扩展点 ScheduledThreadPoolExecutor
    } finally {
        mainLock.unlock();
    }
    // 尝试终结(没有运行的线程可以立刻终结,如果还有运行的线程也不会等)
    tryTerminate();
}

shutdownNow

/*
线程池状态变为 STOP
- 不会接收新任务
- 会将队列中的任务返回
- 并用 interrupt 的方式中断正在执行的任务
*/
List<Runnable> shutdownNow();
public List<Runnable> shutdownNow() {
    List<Runnable> tasks;
    final ReentrantLock mainLock = this.mainLock;
    mainLock.lock();
    try {
        checkShutdownAccess();
        // 修改线程池状态
        advanceRunState(STOP);
        // 打断所有线程
        interruptWorkers();
        // 获取队列中剩余任务
        tasks = drainQueue();
    } finally {
        mainLock.unlock();
    }
    // 尝试终结
    tryTerminate();
    return tasks; 
}

其它方法

// 不在 RUNNING 状态的线程池,此方法就返回 true
boolean isShutdown();
​
// 线程池状态是否是 TERMINATED
boolean isTerminated();
​
// 调用 shutdown 后,由于调用线程并不会等待所有任务运行结束,因此如果它想在线程池 TERMINATED 后做些事情,可以利用此方法等待
boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

模式之 Worker Thread

任务调度线程池

在『任务调度线程池』功能加入之前,可以使用 java.util.Timer 来实现定时功能,Timer 的优点在于简单易用,但由于所有任务都是由同一个线程来调度,因此所有任务都是串行执行的,同一时间只能有一个任务在执行,前一个任务的延迟或异常都将会影响到之后的任务。

public static void main(String[] args) {
    Timer timer = new Timer();
    TimerTask task1 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 1");
            sleep(2);
        }
    };
    TimerTask task2 = new TimerTask() {
        @Override
        public void run() {
            log.debug("task 2");
        }
    };
    // 使用 timer 添加两个任务,希望它们都在 1s 后执行
    // 但由于 timer 内只有一个线程来顺序执行队列中的任务,因此『任务1』的延时,影响了『任务2』的执行
    timer.schedule(task1, 1000);
    timer.schedule(task2, 1000);
}

输出

20:46:09.444 c.TestTimer [main] - start... 
20:46:10.447 c.TestTimer [Timer-0] - task 1 
20:46:12.448 c.TestTimer [Timer-0] - task 2

使用 ScheduledExecutorService 改写:

ScheduledExecutorService executor = Executors.newScheduledThreadPool(2);
// 添加两个任务,希望它们都在 1s 后执行
executor.schedule(() -> {
    System.out.println("任务1,执行时间:" + new Date());
    try { Thread.sleep(2000); } catch (InterruptedException e) { }
}, 1000, TimeUnit.MILLISECONDS);
executor.schedule(() -> {
    System.out.println("任务2,执行时间:" + new Date());
}, 1000, TimeUnit.MILLISECONDS);

输出

任务1,执行时间:Thu Jan 03 12:45:17 CST 2019 
任务2,执行时间:Thu Jan 03 12:45:17 CST 2019

scheduleAtFixedRate 例子:

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
    log.debug("start...");
pool.scheduleAtFixedRate(() -> {
    log.debug("running...");
}, 1, 1, TimeUnit.SECONDS);

输出

21:45:43.167 c.TestTimer [main] - start... 
21:45:44.215 c.TestTimer [pool-1-thread-1] - running... 
21:45:45.215 c.TestTimer [pool-1-thread-1] - running... 
21:45:46.215 c.TestTimer [pool-1-thread-1] - running... 
21:45:47.215 c.TestTimer [pool-1-thread-1] - running...

scheduleAtFixedRate 例子(任务执行时间超过了间隔时间):

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleAtFixedRate(() -> {
    log.debug("running...");
    sleep(2);
}, 1, 1, TimeUnit.SECONDS);

输出分析:一开始,延时 1s,接下来,由于任务执行时间 > 间隔时间,间隔被『撑』到了 2s

21:44:30.311 c.TestTimer [main] - start... 
21:44:31.360 c.TestTimer [pool-1-thread-1] - running... 
21:44:33.361 c.TestTimer [pool-1-thread-1] - running... 
21:44:35.362 c.TestTimer [pool-1-thread-1] - running... 
21:44:37.362 c.TestTimer [pool-1-thread-1] - running

scheduleWithFixedDelay 例子:

ScheduledExecutorService pool = Executors.newScheduledThreadPool(1);
log.debug("start...");
pool.scheduleWithFixedDelay(()-> {
    log.debug("running...");
    sleep(2);
}, 1, 1, TimeUnit.SECONDS);

输出分析:一开始,延时 1s,scheduleWithFixedDelay 的间隔是 上一个任务结束 <-> 延时 <-> 下一个任务开始 所以间隔都是 3s

21:40:55.078 c.TestTimer [main] - start... 
21:40:56.140 c.TestTimer [pool-1-thread-1] - running... 
21:40:59.143 c.TestTimer [pool-1-thread-1] - running... 
21:41:02.145 c.TestTimer [pool-1-thread-1] - running... 
21:41:05.147 c.TestTimer [pool-1-thread-1] - running...

评价 整个线程池表现为:线程数固定,任务数多于线程数时,会放入无界队列排队。任务执行完毕,这些线程也不会被释放。用来执行延迟或反复执行的任务。

正确处理执行任务异常

方法1:主动捉异常

pool.submit(() -> {
    try {
        log.debug("task1");
        int i = 1 / 0;
    } catch (Exception e) {
        log.error("error:", e);
    }
});

输出

21:59:04.558 c.TestTimer [pool-1-thread-1] - task1 
21:59:04.562 c.TestTimer [pool-1-thread-1] - error: 
java.lang.ArithmeticException: / by zero 
     at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) 
     at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) 
     at java.util.concurrent.FutureTask.run(FutureTask.java:266) 
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) 
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) 
     at java.lang.Thread.run(Thread.java:748)

方法2:使用 Future

ExecutorService pool = Executors.newFixedThreadPool(1);
ExecutorService pool = Executors.newFixedThreadPool(1);
Future<Boolean> f = pool.submit(() -> {
    log.debug("task1");
    int i = 1 / 0;
    return true;
});
log.debug("result:{}", f.get());

输出

21:54:58.208 c.TestTimer [pool-1-thread-1] - task1 
Exception in thread "main" java.util.concurrent.ExecutionException: 
java.lang.ArithmeticException: / by zero 
     at java.util.concurrent.FutureTask.report(FutureTask.java:122) 
     at java.util.concurrent.FutureTask.get(FutureTask.java:192) 
     at cn.itcast.n8.TestTimer.main(TestTimer.java:31) 
Caused by: java.lang.ArithmeticException: / by zero 
     at cn.itcast.n8.TestTimer.lambda$main$0(TestTimer.java:28) 
     at java.util.concurrent.FutureTask.run(FutureTask.java:266) 
     at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) 
     at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) 
     at java.lang.Thread.run(Thread.java:748)

JUC

AQS原理

概述

全称是 AbstractQueuedSynchronizer,是阻塞式锁和相关的同步器工具的框架。

特点:

  • 用 state 属性来表示资源的状态(分独占模式和共享模式),子类需要定义如何维护这个状态,控制如何获取锁和释放锁

    • getState - 获取 state 状态

    • setState - 设置 state 状态

    • compareAndSetState - cas 机制设置 state 状态

    • 独占模式是只有一个线程能够访问资源,而共享模式可以允许多个线程访问资源

  • 提供了基于 FIFO 的等待队列,类似于 Monitor 的 EntryList

  • 条件变量来实现等待、唤醒机制,支持多个条件变量,类似于 Monitor 的 WaitSet

子类主要实现这样一些方法(默认抛出 UnsupportedOperationException)

  • tryAcquire

  • tryRelease

  • tryAcquireShared

  • tryReleaseShared

  • isHeldExclusively

获取锁的姿势

// 如果获取锁失败
if (!tryAcquire(arg)) {
    // 入队, 可以选择阻塞当前线程 park unpark
}

释放锁的姿势

// 如果释放锁成功
if (tryRelease(arg)) {
    // 让阻塞线程恢复运行
}

目标

AQS 要实现的功能目标

  • 阻塞版本获取锁 acquire 和非阻塞的版本尝试获取锁 tryAcquire

  • 获取锁超时机制

  • 通过打断取消机制

  • 独占机制及共享机制

  • 条件不满足时的等待机制

实现不可重入锁

@Slf4j(topic = "c.MyLock")
public class MyLock implements Lock {
    public static void main(String[] args) {
        MyLock lock = new MyLock();
        new Thread(() -> {
            lock.lock();
            try {
                log.debug("locking...");
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        }, "t1").start();
        new Thread(() -> {
            lock.lock();
            try {
                log.debug("locking...");
            } finally {
                log.debug("unlocking...");
                lock.unlock();
            }
        }, "t2").start();
    }
​
    // 独占锁
    class MySync extends AbstractQueuedSynchronizer {
​
        @Override
        protected boolean tryAcquire(int acquires) {
            if (acquires == 1) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
            }
            return false;
        }
​
        @Override
        protected boolean tryRelease(int acquires) {
            if (acquires == 1) {
                if (getState() == 0) {
                    throw new IllegalMonitorStateException();
                }
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
            return false;
        }
​
        protected Condition newCondition() {
            return new ConditionObject();
        }
​
        @Override
        protected boolean isHeldExclusively() {
            return getState() == 1;
        }
    }
​
    private MySync mySync = new MySync();
​
    @Override   // 加锁,不成功会进入等待队列
    public void lock() {
        mySync.acquire(1);
    }
​
    @Override   // 加锁,可打断
    public void lockInterruptibly() throws InterruptedException {
        mySync.acquireInterruptibly(1);
    }
​
    @Override   // 尝试加锁(一次)
    public boolean tryLock() {
        return mySync.tryAcquire(1);
    }
​
    @Override   // 尝试加锁,带超时
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return mySync.tryAcquireNanos(1, unit.toNanos(time));
    }
​
    @Override   // 解锁
    public void unlock() {
        mySync.release(1);
    }
​
    @Override   // 创建条件变量
    public Condition newCondition() {
        return mySync.newCondition();
    }
}

设计

AQS 的基本思想其实很简单

获取锁的逻辑

while(state 状态不允许获取) {
    if(队列中还没有此线程) {
        入队并阻塞
    }
}
当前线程出队

释放锁的逻辑

if(state 状态允许了) {
    恢复阻塞的线程(s) 
 }

要点

  • 原子维护 state 状态

  • 阻塞及恢复线程

  • 维护队列

state 设计

  • state 使用 volatile 配合 cas 保证其修改时的原子性

  • state 使用了 32bit int 来维护同步状态,因为当时使用 long 在很多平台下测试的结果并不理想

阻塞恢复设计

  • 早期的控制线程暂停和恢复的 api 有 suspend 和 resume,但它们是不可用的,因为如果先调用的 resume 那么 suspend 将感知不到

  • 解决方法是使用 park & unpark 来实现线程的暂停和恢复,具体原理在之前讲过了,先 unpark 再 park 也没问题

  • park & unpark 是针对线程的,而不是针对同步器的,因此控制粒度更为精细

  • park 线程还可以通过 interrupt 打断

队列设计

  • 使用了 FIFO 先入先出队列,并不支持优先级队列

  • 设计时借鉴了 CLH 队列,它是一种单向无锁队列

队列中有 head 和 tail 两个指针节点,都用 volatile 修饰配合 cas 使用,每个节点有 state 维护节点状态。

入队伪代码,只需要考虑 tail 赋值的原子性

do {
    // 原来的 tail
    Node prev = tail;
    // 用 cas 在原来 tail 的基础上改为 node
} while(tail.compareAndSet(prev, node))

出队伪代码

// prev 是上一个节点
while((Node prev=node.prev).state != 唤醒状态) {
}
// 设置头节点
head = node;

CLH 好处:

  • 无锁,使用自旋

  • 快速,无阻塞

AQS 在一些方面改进了 CLH

private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        // 队列中还没有元素 tail 为 null
        if (t == null) {
            // 将 head 从 null -> dummy
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            // 将 node 的 prev 设置为原来的 tail
            node.prev = t;
            // 将 tail 从原来的 tail 设置为 node
            if (compareAndSetTail(t, node)) {
                // 原来 tail 的 next 设置为 node
                t.next = node;
                return t;
            }
        }
    }
}

主要用到AQS的并发工具类

ReentrantLock原理

非公平锁实现原理

加锁解锁流程

先从构造器开始看,默认为非公平锁实现

public ReentrantLock() {
    sync = new NonfairSync();
}

NonfairSync 继承自 AQS,没有竞争时

第一个竞争出现时

Thread-1 执行了

  1. CAS 尝试将 state 由 0 改为 1,结果失败

  2. 进入 tryAcquire 逻辑,这时 state 已经是1,结果仍然失败

  3. 接下来进入 addWaiter 逻辑,构造 Node 队列

    • 图中黄色三角表示该 Node 的 waitStatus 状态,其中 0 为默认正常状态

    • Node 的创建是懒惰的

    • 其中第一个 Node 称为 Dummy(哑元)或哨兵,用来占位,并不关联线程

当前线程进入 acquireQueued 逻辑

  1. acquireQueued 会在一个死循环中不断尝试获得锁,失败后进入 park 阻塞

  2. 如果自己是紧邻着 head(排第二位),那么再次 tryAcquire 尝试获取锁,当然这时 state 仍为 1,失败

  3. 进入 shouldParkAfterFailedAcquire 逻辑,将前驱 node,即 head 的 waitStatus 改为 -1,这次返回 false(-1表示可以唤醒下一个节点)

  1. shouldParkAfterFailedAcquire 执行完毕回到 acquireQueued ,再次 tryAcquire 尝试获取锁,当然这时state 仍为 1,失败

  2. 当再次进入 shouldParkAfterFailedAcquire 时,这时因为其前驱 node 的 waitStatus 已经是 -1,这次返回true

  3. 进入 parkAndCheckInterrupt, Thread-1 park(灰色表示)

再次有多个线程经历上述过程竞争失败,变成这个样子,都在等待

Thread-0 释放锁,进入 tryRelease 流程,如果成功

  • 设置 exclusiveOwnerThread 为 null

  • state = 0

当前队列不为 null,并且 head 的 waitStatus = -1,进入 unparkSuccessor 流程

找到队列中离 head 最近的一个 Node(没取消的),unpark 恢复其运行,本例中即为 Thread-1

回到 Thread-1 的 acquireQueued 流程

如果加锁成功(没有竞争),会设置

  • exclusiveOwnerThread 为 Thread-1,state = 1

  • head 指向刚刚 Thread-1 所在的 Node,该 Node 清空 Thread

  • 原本的 head 因为从链表断开,而可被垃圾回收

如果这时候有其它线程来竞争(非公平的体现),例如这时有 Thread-4 来了

如果不巧又被 Thread-4 占了先

  • Thread-4 被设置为 exclusiveOwnerThread,state = 1

  • Thread-1 再次进入 acquireQueued 流程,获取锁失败,重新进入 park 阻塞

加锁源码

// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    private static final long serialVersionUID = 7316153563782823691L;
​
    // 加锁实现
    final void lock() {
        // 首先用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示获得了独占锁
        if (compareAndSetState(0, 1))
            setExclusiveOwnerThread(Thread.currentThread());
        else
            // 如果尝试失败,进入 ㈠
            acquire(1);
    }
​
    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        // ㈡ tryAcquire
        if (
                !tryAcquire(arg) &&
                        // 当 tryAcquire 返回为 false 时, 先调用 addWaiter ㈣, 接着 acquireQueued ㈤
                        acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }
​
    // ㈡ 进入 ㈢
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
​
    // ㈢ Sync 继承过来的方法, 方便阅读, 放在此处
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        // 如果还没有获得锁
        if (c == 0) {
            // 尝试用 cas 获得, 这里体现了非公平性: 不去检查 AQS 队列
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
        else if (current == getExclusiveOwnerThread()) {
            // state++
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        // 获取失败, 回到调用处
        return false;
    }
​
    // ㈣ AQS 继承过来的方法, 方便阅读, 放在此处
    private Node addWaiter(Node mode) {
        // 将当前线程关联到一个 Node 对象上, 模式为独占模式
        Node node = new Node(Thread.currentThread(), mode);
        // 如果 tail 不为 null, cas 尝试将 Node 对象加入 AQS 队列尾部
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                // 双向链表
                pred.next = node;
                return node;
            }
        }
        // 尝试将 Node 加入 AQS, 进入 ㈥
        enq(node);
        return node;
    }
​
    // ㈥ AQS 继承过来的方法, 方便阅读, 放在此处
    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) {
                // 还没有, 设置 head 为哨兵节点(不对应线程,状态为 0)
                if (compareAndSetHead(new Node())) {
                    tail = head;
                }
            } else {
                // cas 尝试将 Node 对象加入 AQS 队列尾部
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
​
    // ㈤ AQS 继承过来的方法, 方便阅读, 放在此处
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                // 上一个节点是 head, 表示轮到自己(当前线程对应的 node)了, 尝试获取
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置自己(当前线程对应的 node)为 head
                    setHead(node);
                    // 上一个节点 help GC
                    p.next = null;
                    failed = false;
                    // 返回中断标记 false
                    return interrupted;
                }
                if (
                    // 判断是否应当 park, 进入 ㈦
                        shouldParkAfterFailedAcquire(p, node) &&
                                // park 等待, 此时 Node 的状态被置为 Node.SIGNAL ㈧
                                parkAndCheckInterrupt()
                ) {
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
​
    // ㈦ AQS 继承过来的方法, 方便阅读, 放在此处
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        // 获取上一个节点的状态
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL) {
            // 上一个节点都在阻塞, 那么自己也阻塞好了
            return true;
        }
        // > 0 表示取消状态
        if (ws > 0) {
            // 上一个节点取消, 那么重构删除前面所有取消的节点, 返回到外层循环重试
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            // 这次还没有阻塞
            // 但下次如果重试不成功, 则需要阻塞,这时需要设置上一个节点状态为 Node.SIGNAL
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
​
    // ㈧ 阻塞当前线程
    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
}

解锁源码

// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    // 解锁实现
    public void unlock() {
        sync.release(1);
    }
​
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean release(int arg) {
        // 尝试释放锁, 进入 ㈠
        if (tryRelease(arg)) {
            // 队列头节点 unpark
            Node h = head;
            if (
                // 队列不为 null
                    h != null &&
                            // waitStatus == Node.SIGNAL 才需要 unpark
                            h.waitStatus != 0
            ) {
                // unpark AQS 中等待的线程, 进入 ㈡
                unparkSuccessor(h);
            }
            return true;
        }
        return false;
    }
​
    // ㈠ Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        // state--
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才释放成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }
​
    // ㈡ AQS 继承过来的方法, 方便阅读, 放在此处
    private void unparkSuccessor(Node node) {
        // 如果状态为 Node.SIGNAL 尝试重置状态为 0
        // 不成功也可以
        int ws = node.waitStatus;
        if (ws < 0) {
            compareAndSetWaitStatus(node, ws, 0);
        }
        // 找到需要 unpark 的节点, 但本节点从 AQS 队列中脱离, 是由唤醒节点完成的
        Node s = node.next;
        // 不考虑已取消的节点, 从 AQS 队列从后至前找到队列最前面需要 unpark 的节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
}

可重入原理

static final class NonfairSync extends Sync {
    // ...
​
    // Sync 继承过来的方法, 方便阅读, 放在此处
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果已经获得了锁, 线程还是当前线程, 表示发生了锁重入
        else if (current == getExclusiveOwnerThread()) {
            // state++
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
​
    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryRelease(int releases) {
        // state--
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才释放成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }
}

可打断原理

不可打断模式

在此模式下,即使它被打断,仍会驻留在 AQS 队列中,一直要等到获得锁后方能得知自己被打断了

// Sync 继承自 AQS
static final class NonfairSync extends Sync {
    // ...
​
    private final boolean parkAndCheckInterrupt() {
        // 如果打断标记已经是 true, 则 park 会失效
        LockSupport.park(this);
        // interrupted 会清除打断标记
        return Thread.interrupted();
    }
​
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (; ; ) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null;
                    failed = false;
                    // 还是需要获得锁后, 才能返回打断状态
                    return interrupted;
                }
                if (
                        shouldParkAfterFailedAcquire(p, node) &&
                                parkAndCheckInterrupt()
                ) {
                    // 如果是因为 interrupt 被唤醒, 返回打断状态为 true
                    interrupted = true;
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
​
    public final void acquire(int arg) {
        if (
                !tryAcquire(arg) &&
                        acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            // 如果打断状态为 true
            selfInterrupt();
        }
    }
​
    static void selfInterrupt() {
        // 重新产生一次中断
        Thread.currentThread().interrupt();
    }
}

不可打断模式

static final class NonfairSync extends Sync {
    public final void acquireInterruptibly(int arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        // 如果没有获得到锁, 进入 ㈠
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }
​
    // ㈠ 可打断的获取锁流程
    private void doAcquireInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt()) {
                    // 在 park 过程中如果被 interrupt 会进入此
                    // 这时候抛出异常, 而不会再次进入 for (;;)
                    throw new InterruptedException();
                }
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
}

公平锁实现原理

static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;
​
    final void lock() {
        acquire(1);
    }
​
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquire(int arg) {
        if (
                !tryAcquire(arg) &&
                        acquireQueued(addWaiter(Node.EXCLUSIVE), arg)
        ) {
            selfInterrupt();
        }
    }
​
    // 与非公平锁主要区别在于 tryAcquire 方法的实现
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            // 先检查 AQS 队列中是否有前驱节点, 没有才去竞争
            if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        } else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
​
    // ㈠ AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean hasQueuedPredecessors() {
        Node t = tail;
        Node h = head;
        Node s;
        // h != t 时表示队列中有 Node
        return h != t &&
                (
                        // (s = h.next) == null 表示队列中还有没有老二
                        (s = h.next) == null ||
                                // 或者队列中老二线程不是此线程
                                s.thread != Thread.currentThread()
                );
    }
}

条件变量实现原理

每个条件变量其实就对应着一个等待队列,其实现类是 ConditionObject

await流程

开始 Thread-0 持有锁,调用 await,进入 ConditionObject 的 addConditionWaiter 流程

创建新的 Node 状态为 -2(Node.CONDITION),关联 Thread-0,加入等待队列尾部

接下来进入 AQS 的 fullyRelease 流程,释放同步器上的锁

unpark AQS 队列中的下一个节点,竞争锁,假设没有其他竞争线程,那么 Thread-1 竞争成功

park 阻塞 Thread-0

signal流程

假设 Thread-1 要来唤醒 Thread-0

进入 ConditionObject 的 doSignal 流程,取得等待队列中第一个 Node,即 Thread-0 所在 Node

执行 transferForSignal 流程,将该 Node 加入 AQS 队列尾部,将 Thread-0 的 waitStatus 改为 0,Thread-3 的waitStatus 改为 -1

读写锁

概述

ReentrantReadWriteLock

当读操作远远高于写操作时,这时候使用 读写锁 让 读-读 可以并发,提高性能。 类似于数据库中的 select ...from ... lock in share mode

提供一个 数据容器类 内部分别使用读锁保护数据的 read() 方法,写锁保护数据的 write() 方法

读写锁的并发问题

  • 读锁和读锁可以并发

  • 读锁和写锁不能并发

  • 写锁和写锁不能并发

注意事项

  • 读锁不支持条件变量

  • 重入时升级不支持:即持有读锁的情况下去获取写锁,会导致获取写锁永久等待

r.lock();
try
    {
        // ...
        w.lock();
        try {
            // ...
        } finally {
            w.unlock();
        }
    } finally
    {
        r.unlock();
    }
  • 重入时降级支持:即持有写锁的情况下去获取读锁

class CachedData {
    Object data;
    // 是否有效,如果失效,需要重新计算 data
    volatile boolean cacheValid;
    final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
    void processCachedData() {
        rwl.readLock().lock();
        if (!cacheValid) {
            // 获取写锁前必须释放读锁
            rwl.readLock().unlock();
            rwl.writeLock().lock();
            try {
                // 判断是否有其它线程已经获取了写锁、更新了缓存, 避免重复更新
                if (!cacheValid) {
                    data = ...
                    cacheValid = true;
                }
                // 降级为读锁, 释放写锁, 这样能够让其它线程读取缓存
                rwl.readLock().lock();
            } finally {
                rwl.writeLock().unlock();
            }
        }
        // 自己用完数据, 释放读锁 
        try {
            use(data);
        } finally {
            rwl.readLock().unlock();
        }
    }
}

也就是在写锁完毕后,降级为读锁,防止其他线程再写。

Semaphore

概述

信号量,用来限制能同时访问共享资源的线程上限。

可以适用停车场来比较,有车位才能进行停车,如果满了,其他车只能等待,需要等正在停的车走后再能进去停车。也就是可以用来做限流。

测试

public static void main(String[] args) {
    // 1. 创建 semaphore 对象
    Semaphore semaphore = new Semaphore(3);
    // 2. 10个线程同时运行
    for (int i = 0; i < 10; i++) {
        new Thread(() -> {
            // 3. 获取许可
            try {
                semaphore.acquire();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            try {
                log.debug("running...");
                sleep(1);
                log.debug("end...");
            } finally {
                // 4. 释放许可
                semaphore.release();
            }
        }).start();
    }
}

结果

07:35:15.485 c.TestSemaphore [Thread-2] - running... 
07:35:15.485 c.TestSemaphore [Thread-1] - running... 
07:35:15.485 c.TestSemaphore [Thread-0] - running... 
07:35:16.490 c.TestSemaphore [Thread-2] - end... 
07:35:16.490 c.TestSemaphore [Thread-0] - end... 
07:35:16.490 c.TestSemaphore [Thread-1] - end... 
07:35:16.490 c.TestSemaphore [Thread-3] - running... 
07:35:16.490 c.TestSemaphore [Thread-5] - running... 
07:35:16.490 c.TestSemaphore [Thread-4] - running... 
07:35:17.490 c.TestSemaphore [Thread-5] - end... 
07:35:17.490 c.TestSemaphore [Thread-4] - end... 
07:35:17.490 c.TestSemaphore [Thread-3] - end... 
07:35:17.490 c.TestSemaphore [Thread-6] - running... 
07:35:17.490 c.TestSemaphore [Thread-7] - running... 
07:35:17.490 c.TestSemaphore [Thread-9] - running... 
07:35:18.491 c.TestSemaphore [Thread-6] - end... 
07:35:18.491 c.TestSemaphore [Thread-7] - end... 
07:35:18.491 c.TestSemaphore [Thread-9] - end... 
07:35:18.491 c.TestSemaphore [Thread-8] - running... 
07:35:19.492 c.TestSemaphore [Thread-8] - end...

Semaphore应用

Semaphore原理

加锁解锁流程

Semaphore 有点像一个停车场,permits 就好像停车位数量,当线程获得了 permits 就像是获得了停车位,然后停车场显示空余车位减一

刚开始,permits(state)为 3,这时 5 个线程来获取资源

假设其中 Thread-1,Thread-2,Thread-4 cas 竞争成功,而 Thread-0 和 Thread-3 竞争失败,进入 AQS 队列park 阻塞

这时 Thread-4 释放了 permits,状态如下

接下来 Thread-0 竞争成功,permits 再次设置为 0,设置自己为 head 节点,断开原来的 head 节点,unpark 接下来的 Thread-3 节点,但由于 permits 是 0,因此 Thread-3 在尝试不成功后再次进入 park 状态

源码

static final class NonfairSync extends Sync {
    private static final long serialVersionUID = -2694183684443567898L;
    NonfairSync(int permits) {
        // permits 即 state
        super(permits);
    }
​
    // Semaphore 方法, 方便阅读, 放在此处
    public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }
​
    // 尝试获得共享锁
    protected int tryAcquireShared(int acquires) {
        return nonfairTryAcquireShared(acquires);
    }
​
    // Sync 继承过来的方法, 方便阅读, 放在此处
    final int nonfairTryAcquireShared(int acquires) {
        for (;;) {
            int available = getState();
            int remaining = available - acquires;
            if (
                // 如果许可已经用完, 返回负数, 表示获取失败, 进入 doAcquireSharedInterruptibly
                    remaining < 0 ||
                            // 如果 cas 重试成功, 返回正数, 表示获取成功
                            compareAndSetState(available, remaining)
            ) {
                return remaining;
            }
        }
    }
​
    // AQS 继承过来的方法, 方便阅读, 放在此处
    private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    // 再次尝试获取许可
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        // 成功后本线程出队(AQS), 所在 Node设置为 head
                        // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
                        // 如果 head.waitStatus == 0 ==> Node.PROPAGATE
                        // r 表示可用资源数, 为 0 则不会继续传播
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                // 不成功, 设置上一个节点 waitStatus = Node.SIGNAL, 下轮进入 park 阻塞
                if (shouldParkAfterFailedAcquire(p, node) &&
                        parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
​
    // Semaphore 方法, 方便阅读, 放在此处
    public void release() {
        sync.releaseShared(1);
    }
​
    // AQS 继承过来的方法, 方便阅读, 放在此处
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
​
    // Sync 继承过来的方法, 方便阅读, 放在此处
    protected final boolean tryReleaseShared(int releases) {
        for (;;) {
            int current = getState();
            int next = current + releases;
            if (next < current) // overflow
                throw new Error("Maximum permit count exceeded");
            if (compareAndSetState(current, next))
                return true;
        }
    }
}

CountdownLatch

概述

用来进行线程同步协作,等待所有线程完成倒计时。

其中构造参数用来初始化等待计数值,await() 用来等待计数归零,countDown() 用来让计数减一

配合线程池使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值